{"title":"论<s:1> rmann定理及其在线性和非线性传热扩散问题中的应用","authors":"Harald M. Schöpf, P. Supancic","doi":"10.3888/TMJ.16-11","DOIUrl":null,"url":null,"abstract":"This article presents a compact analytic approximation to the solution of a nonlinear partial differential equation of the diffusion type by using Bürmannʼs theorem. Expanding an analytic function in powers of its derivative is shown to be a useful approach for solutions satisfying an integral relation, such as the error function and the heat integral for nonlinear heat transfer. Based on this approach, series expansions for solutions of nonlinear equations are constructed. The convergence of a Bürmann series can be enhanced by introducing basis functions depending on an additional parameter, which is determined by the boundary conditions. A nonlinear example, illustrating this enhancement, is embedded into a comprehensive presentation of Bürmannʼs theorem. Besides a recursive scheme for elementary cases, a fast algorithm for multivalued Bürmann expansions and inverse functions is developed using integer partitions. The present approach facilitates the search for expansions of analytic functions superior to commonly used Taylor series and shows how to apply these expansions to nonlinear PDEs of the diffusion type.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On Bürmann's Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion\",\"authors\":\"Harald M. Schöpf, P. Supancic\",\"doi\":\"10.3888/TMJ.16-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a compact analytic approximation to the solution of a nonlinear partial differential equation of the diffusion type by using Bürmannʼs theorem. Expanding an analytic function in powers of its derivative is shown to be a useful approach for solutions satisfying an integral relation, such as the error function and the heat integral for nonlinear heat transfer. Based on this approach, series expansions for solutions of nonlinear equations are constructed. The convergence of a Bürmann series can be enhanced by introducing basis functions depending on an additional parameter, which is determined by the boundary conditions. A nonlinear example, illustrating this enhancement, is embedded into a comprehensive presentation of Bürmannʼs theorem. Besides a recursive scheme for elementary cases, a fast algorithm for multivalued Bürmann expansions and inverse functions is developed using integer partitions. The present approach facilitates the search for expansions of analytic functions superior to commonly used Taylor series and shows how to apply these expansions to nonlinear PDEs of the diffusion type.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.16-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.16-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Bürmann's Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion
This article presents a compact analytic approximation to the solution of a nonlinear partial differential equation of the diffusion type by using Bürmannʼs theorem. Expanding an analytic function in powers of its derivative is shown to be a useful approach for solutions satisfying an integral relation, such as the error function and the heat integral for nonlinear heat transfer. Based on this approach, series expansions for solutions of nonlinear equations are constructed. The convergence of a Bürmann series can be enhanced by introducing basis functions depending on an additional parameter, which is determined by the boundary conditions. A nonlinear example, illustrating this enhancement, is embedded into a comprehensive presentation of Bürmannʼs theorem. Besides a recursive scheme for elementary cases, a fast algorithm for multivalued Bürmann expansions and inverse functions is developed using integer partitions. The present approach facilitates the search for expansions of analytic functions superior to commonly used Taylor series and shows how to apply these expansions to nonlinear PDEs of the diffusion type.