ML估计量的抽样分布:柯西例子

J. Vrbik
{"title":"ML估计量的抽样分布:柯西例子","authors":"J. Vrbik","doi":"10.3888/TMJ.13-19","DOIUrl":null,"url":null,"abstract":"p y 1 s2 + Hx mL2 , where x can have any real value. The distribution has two parameters m and s, which represent its median (the “location” parameter) and semi-interquartile deviation (the “scale” parameter), respectively. This rather unusual distribution has no mean and infinite standard deviation. The exact parameter values are usually not known, and need to be estimated by repeating the corresponding random experiment independently n times, and converting the information thus gathered into two respective estimates of m and s. The best way of doing this is by maximizing the corresponding likelihood function:","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sampling Distribution of ML Estimators: Cauchy Example\",\"authors\":\"J. Vrbik\",\"doi\":\"10.3888/TMJ.13-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"p y 1 s2 + Hx mL2 , where x can have any real value. The distribution has two parameters m and s, which represent its median (the “location” parameter) and semi-interquartile deviation (the “scale” parameter), respectively. This rather unusual distribution has no mean and infinite standard deviation. The exact parameter values are usually not known, and need to be estimated by repeating the corresponding random experiment independently n times, and converting the information thus gathered into two respective estimates of m and s. The best way of doing this is by maximizing the corresponding likelihood function:\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.13-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.13-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

p1s2 + hxml2,其中x可以是任意实数。分布有两个参数m和s,分别表示其中位数(“位置”参数)和半四分位数偏差(“尺度”参数)。这个不寻常的分布没有平均值,标准差无限大。准确的参数值通常是未知的,需要通过独立地重复相应的随机实验n次来估计,并将收集到的信息转换为m和s的两个估定值。最好的方法是最大化相应的似然函数:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling Distribution of ML Estimators: Cauchy Example
p y 1 s2 + Hx mL2 , where x can have any real value. The distribution has two parameters m and s, which represent its median (the “location” parameter) and semi-interquartile deviation (the “scale” parameter), respectively. This rather unusual distribution has no mean and infinite standard deviation. The exact parameter values are usually not known, and need to be estimated by repeating the corresponding random experiment independently n times, and converting the information thus gathered into two respective estimates of m and s. The best way of doing this is by maximizing the corresponding likelihood function:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信