{"title":"费雪判别与核","authors":"Hugh Murrell, K. Hashimoto, Daichi Takatori","doi":"10.3888/TMJ.13-13","DOIUrl":null,"url":null,"abstract":"Fisher first introduced the Fisher linear discriminant back in 1938. After the popularization of the support vector machine (SVM) and the kernel trick it became inevitable that the Fisher linear discriminant would be kernelized. Sebastian Mika accomplished this task as part of his Ph.D. in 2002 and the kernelized Fisher discriminant (KFD) now forms part of the largescale machine-learning tool Shogun. In this article we introduce the package MathKFD. We apply MathKFD to synthetic datasets to demonstrate nonlinear classification via kernels. We also test performance on datasets from the machine-learning literature. The construction of MathKFD follows closely in style the construction of MathSVM by Nilsson and colleagues. We hope these two packages and others of the same ilk will eventually be integrated to form a kernel-based machine-learning environment for Mathematica.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fisher Discrimination with Kernels\",\"authors\":\"Hugh Murrell, K. Hashimoto, Daichi Takatori\",\"doi\":\"10.3888/TMJ.13-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fisher first introduced the Fisher linear discriminant back in 1938. After the popularization of the support vector machine (SVM) and the kernel trick it became inevitable that the Fisher linear discriminant would be kernelized. Sebastian Mika accomplished this task as part of his Ph.D. in 2002 and the kernelized Fisher discriminant (KFD) now forms part of the largescale machine-learning tool Shogun. In this article we introduce the package MathKFD. We apply MathKFD to synthetic datasets to demonstrate nonlinear classification via kernels. We also test performance on datasets from the machine-learning literature. The construction of MathKFD follows closely in style the construction of MathSVM by Nilsson and colleagues. We hope these two packages and others of the same ilk will eventually be integrated to form a kernel-based machine-learning environment for Mathematica.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.13-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.13-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fisher first introduced the Fisher linear discriminant back in 1938. After the popularization of the support vector machine (SVM) and the kernel trick it became inevitable that the Fisher linear discriminant would be kernelized. Sebastian Mika accomplished this task as part of his Ph.D. in 2002 and the kernelized Fisher discriminant (KFD) now forms part of the largescale machine-learning tool Shogun. In this article we introduce the package MathKFD. We apply MathKFD to synthetic datasets to demonstrate nonlinear classification via kernels. We also test performance on datasets from the machine-learning literature. The construction of MathKFD follows closely in style the construction of MathSVM by Nilsson and colleagues. We hope these two packages and others of the same ilk will eventually be integrated to form a kernel-based machine-learning environment for Mathematica.