{"title":"分布的组合学","authors":"B. Günther","doi":"10.3888/TMJ.13-10","DOIUrl":null,"url":null,"abstract":"Distributions, which are the various ways of distributing a certain number of objects of different classes among a collection of targets, have been the subject of combinatorial investigations since MacMahonʼs 1917 monograph. In this paper we apply them to a simulation of superimposed random coding. Furthermore, asymptotic estimates are provided using logarithmic polynomials (related to the well-known Bell polynomials) for symbolic and numeric calculation.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Combinatorics of Distributions\",\"authors\":\"B. Günther\",\"doi\":\"10.3888/TMJ.13-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributions, which are the various ways of distributing a certain number of objects of different classes among a collection of targets, have been the subject of combinatorial investigations since MacMahonʼs 1917 monograph. In this paper we apply them to a simulation of superimposed random coding. Furthermore, asymptotic estimates are provided using logarithmic polynomials (related to the well-known Bell polynomials) for symbolic and numeric calculation.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.13-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.13-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributions, which are the various ways of distributing a certain number of objects of different classes among a collection of targets, have been the subject of combinatorial investigations since MacMahonʼs 1917 monograph. In this paper we apply them to a simulation of superimposed random coding. Furthermore, asymptotic estimates are provided using logarithmic polynomials (related to the well-known Bell polynomials) for symbolic and numeric calculation.