可分性和状态复杂性

Klaus Sutner
{"title":"可分性和状态复杂性","authors":"Klaus Sutner","doi":"10.3888/TMJ.11.3-8","DOIUrl":null,"url":null,"abstract":"It is well known that the set of all natural numbers divisible by a fixed modulus m can be recognized by a finite state machine, assuming that the numbers are written in standard base-B representation. It is much harder to determine the state complexity of the minimal recognizer [1]. In this article we discuss the size of minimal recognizers for a variety of numeration systems, including reverse base-B representation and the Fibonacci system.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"11 1","pages":"430-445"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Divisibility and State Complexity\",\"authors\":\"Klaus Sutner\",\"doi\":\"10.3888/TMJ.11.3-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the set of all natural numbers divisible by a fixed modulus m can be recognized by a finite state machine, assuming that the numbers are written in standard base-B representation. It is much harder to determine the state complexity of the minimal recognizer [1]. In this article we discuss the size of minimal recognizers for a variety of numeration systems, including reverse base-B representation and the Fibonacci system.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"11 1\",\"pages\":\"430-445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.11.3-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.11.3-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

众所周知,所有能被固定模m整除的自然数的集合都可以被有限状态机识别,假设这些数用标准的base-B表示。确定最小识别器[1]的状态复杂度要困难得多。在本文中,我们讨论了各种计数系统的最小识别器的大小,包括反向基数b表示和斐波那契系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisibility and State Complexity
It is well known that the set of all natural numbers divisible by a fixed modulus m can be recognized by a finite state machine, assuming that the numbers are written in standard base-B representation. It is much harder to determine the state complexity of the minimal recognizer [1]. In this article we discuss the size of minimal recognizers for a variety of numeration systems, including reverse base-B representation and the Fibonacci system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信