W. Lian, T. Sun, X. Meng, R. Sun, F. Hui, Y. Jiang, Y. Zhao
{"title":"过表达人参MYB4基因提高转基因拟南芥的抗逆性","authors":"W. Lian, T. Sun, X. Meng, R. Sun, F. Hui, Y. Jiang, Y. Zhao","doi":"10.32615/BP.2020.164","DOIUrl":null,"url":null,"abstract":"The myeloblastosis (MYB) transcription factors are essential for plant stress responses. They can enhance plant tolerance to abiotic stresses (e.g., drought, salinity, and cold) via improved physiological and biochemical responses including the accumulation of metabolites. In this study, we constructed a Panax ginseng MYB4 (PgMYB4) gene expression vector and established the stable transgenic Arabidopsis thaliana lines to study the effects of this gene on plant stress tolerance. The germination rate and seedling taproot length were greater for the PgMYB4-overexpressing plants than for the wild-type plants. Accordingly, the overexpression of PgMYB4 in Arabidopsis enhanced seedling tolerance to drought, salt, and cold conditions. Under drought stress, the relative chlorophyll content decreased less, the proline content increased more, and the water loss rate decreased more in the transgenic plants than in the wild type. The expressions of stress-related genes responsive to dehydration 19A, responsive to dehydration 22, responsive to desiccation 29A, cold-regulated 15A, cold-regulated 47, and pyrroline-5-carboxylate synthase 1 were significantly upregulated in the transgenic Arabidopsis plants. Under high salt stress, the kinesin 1 (KIN1) expression was significantly upregulated in the transgenic plants. In response to the low temperature stress, the dehydration-responsive element binding protein 2A and KIN1 expressions increased dramatically in the transgenic Arabidopsis plants. Thus, PgMYB4 positively regulated the stress tolerance gene networks, which promoted the expression of anti-stress effector genes. This gene may be useful for ginseng breeding programs aiming to develop new cultivars with enhanced stress tolerance.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"27-38"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overexpression of the Panax ginseng MYB4 gene enhances stress tolerance in transgenic Arabidopsis thaliana\",\"authors\":\"W. Lian, T. Sun, X. Meng, R. Sun, F. Hui, Y. Jiang, Y. Zhao\",\"doi\":\"10.32615/BP.2020.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The myeloblastosis (MYB) transcription factors are essential for plant stress responses. They can enhance plant tolerance to abiotic stresses (e.g., drought, salinity, and cold) via improved physiological and biochemical responses including the accumulation of metabolites. In this study, we constructed a Panax ginseng MYB4 (PgMYB4) gene expression vector and established the stable transgenic Arabidopsis thaliana lines to study the effects of this gene on plant stress tolerance. The germination rate and seedling taproot length were greater for the PgMYB4-overexpressing plants than for the wild-type plants. Accordingly, the overexpression of PgMYB4 in Arabidopsis enhanced seedling tolerance to drought, salt, and cold conditions. Under drought stress, the relative chlorophyll content decreased less, the proline content increased more, and the water loss rate decreased more in the transgenic plants than in the wild type. The expressions of stress-related genes responsive to dehydration 19A, responsive to dehydration 22, responsive to desiccation 29A, cold-regulated 15A, cold-regulated 47, and pyrroline-5-carboxylate synthase 1 were significantly upregulated in the transgenic Arabidopsis plants. Under high salt stress, the kinesin 1 (KIN1) expression was significantly upregulated in the transgenic plants. In response to the low temperature stress, the dehydration-responsive element binding protein 2A and KIN1 expressions increased dramatically in the transgenic Arabidopsis plants. Thus, PgMYB4 positively regulated the stress tolerance gene networks, which promoted the expression of anti-stress effector genes. This gene may be useful for ginseng breeding programs aiming to develop new cultivars with enhanced stress tolerance.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\"65 1\",\"pages\":\"27-38\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/BP.2020.164\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2020.164","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Overexpression of the Panax ginseng MYB4 gene enhances stress tolerance in transgenic Arabidopsis thaliana
The myeloblastosis (MYB) transcription factors are essential for plant stress responses. They can enhance plant tolerance to abiotic stresses (e.g., drought, salinity, and cold) via improved physiological and biochemical responses including the accumulation of metabolites. In this study, we constructed a Panax ginseng MYB4 (PgMYB4) gene expression vector and established the stable transgenic Arabidopsis thaliana lines to study the effects of this gene on plant stress tolerance. The germination rate and seedling taproot length were greater for the PgMYB4-overexpressing plants than for the wild-type plants. Accordingly, the overexpression of PgMYB4 in Arabidopsis enhanced seedling tolerance to drought, salt, and cold conditions. Under drought stress, the relative chlorophyll content decreased less, the proline content increased more, and the water loss rate decreased more in the transgenic plants than in the wild type. The expressions of stress-related genes responsive to dehydration 19A, responsive to dehydration 22, responsive to desiccation 29A, cold-regulated 15A, cold-regulated 47, and pyrroline-5-carboxylate synthase 1 were significantly upregulated in the transgenic Arabidopsis plants. Under high salt stress, the kinesin 1 (KIN1) expression was significantly upregulated in the transgenic plants. In response to the low temperature stress, the dehydration-responsive element binding protein 2A and KIN1 expressions increased dramatically in the transgenic Arabidopsis plants. Thus, PgMYB4 positively regulated the stress tolerance gene networks, which promoted the expression of anti-stress effector genes. This gene may be useful for ginseng breeding programs aiming to develop new cultivars with enhanced stress tolerance.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.