基于Spider算法的非线性动力系统理论的Mathematica实现及高次多项式的临界零求

T. Jonassen
{"title":"基于Spider算法的非线性动力系统理论的Mathematica实现及高次多项式的临界零求","authors":"T. Jonassen","doi":"10.3888/TMJ.11.3-2","DOIUrl":null,"url":null,"abstract":"Important properties pertaining to families of discrete dynamical systems are furnished here by studying the kneading theory developed by Milnor and Thurston, and subsequently implementing the spider algorithm, developed by Hubbard and Schleicher. The focus is on identifying crucial combinatorial and numerical properties of periodic critical orbits in one-dimensional discrete dynamical systems, which are generated by iterating real quadratic polynomial maps that constitute an important class of unimodal systems.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"11 1","pages":"315-332"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Mathematica Implementation of Nonlinear Dynamical Systems Theory via the Spider Algorithm and Finding Critical Zeros of High-Degree Polynomials\",\"authors\":\"T. Jonassen\",\"doi\":\"10.3888/TMJ.11.3-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Important properties pertaining to families of discrete dynamical systems are furnished here by studying the kneading theory developed by Milnor and Thurston, and subsequently implementing the spider algorithm, developed by Hubbard and Schleicher. The focus is on identifying crucial combinatorial and numerical properties of periodic critical orbits in one-dimensional discrete dynamical systems, which are generated by iterating real quadratic polynomial maps that constitute an important class of unimodal systems.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"11 1\",\"pages\":\"315-332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.11.3-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.11.3-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过研究Milnor和Thurston提出的揉合理论,以及随后实现Hubbard和Schleicher提出的蜘蛛算法,提供了离散动力系统族的重要性质。重点是识别周期临界轨道的关键组合和数值性质在一维离散动力系统,这是由迭代实二次多项式映射,构成单峰系统的一个重要类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematica Implementation of Nonlinear Dynamical Systems Theory via the Spider Algorithm and Finding Critical Zeros of High-Degree Polynomials
Important properties pertaining to families of discrete dynamical systems are furnished here by studying the kneading theory developed by Milnor and Thurston, and subsequently implementing the spider algorithm, developed by Hubbard and Schleicher. The focus is on identifying crucial combinatorial and numerical properties of periodic critical orbits in one-dimensional discrete dynamical systems, which are generated by iterating real quadratic polynomial maps that constitute an important class of unimodal systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信