用pseval包介绍主代理评估

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2016-12-01 DOI:10.32614/RJ-2016-046
M. Sachs, E. Gabriel
{"title":"用pseval包介绍主代理评估","authors":"M. Sachs, E. Gabriel","doi":"10.32614/RJ-2016-046","DOIUrl":null,"url":null,"abstract":"We describe a new package called pseval that implements the core methods for the evaluation of principal surrogates in a single clinical trial. It provides a flexible interface for defining models for the risk given treatment and the surrogate, the models for integration over the missing counterfactual surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score can be used for estimation, and the bootstrap for inference. A variety of post-estimation methods are provided, including print, summary, plot, and testing. We summarize the main statistical methods that are implemented in the package and illustrate its use from the perspective of a novice R user.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"8 2 1","pages":"277-292"},"PeriodicalIF":2.3000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Introduction to Principal Surrogate Evaluation with the pseval Package\",\"authors\":\"M. Sachs, E. Gabriel\",\"doi\":\"10.32614/RJ-2016-046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new package called pseval that implements the core methods for the evaluation of principal surrogates in a single clinical trial. It provides a flexible interface for defining models for the risk given treatment and the surrogate, the models for integration over the missing counterfactual surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score can be used for estimation, and the bootstrap for inference. A variety of post-estimation methods are provided, including print, summary, plot, and testing. We summarize the main statistical methods that are implemented in the package and illustrate its use from the perspective of a novice R user.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"8 2 1\",\"pages\":\"277-292\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/RJ-2016-046\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/RJ-2016-046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了一个名为pseval的新软件包,它实现了在单个临床试验中评估主要替代物的核心方法。它提供了一个灵活的接口,用于定义给定治疗和代理的风险模型、缺失的反事实代理响应的集成模型以及估计方法。估计的最大似然和伪分数可用于估计,自举用于推理。提供了多种后估计方法,包括打印、总结、绘图和测试。我们总结了包中实现的主要统计方法,并从R新手用户的角度说明了它的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Introduction to Principal Surrogate Evaluation with the pseval Package
We describe a new package called pseval that implements the core methods for the evaluation of principal surrogates in a single clinical trial. It provides a flexible interface for defining models for the risk given treatment and the surrogate, the models for integration over the missing counterfactual surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score can be used for estimation, and the bootstrap for inference. A variety of post-estimation methods are provided, including print, summary, plot, and testing. We summarize the main statistical methods that are implemented in the package and illustrate its use from the perspective of a novice R user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信