{"title":"630 nm激光在模拟人脑肿瘤的聚乙烯醇黏液胶幻象中的有效衰减系数和穿透深度","authors":"B. Adeleye, N. Chetty, L. Ntombela","doi":"10.3176/proc.2022.3.03","DOIUrl":null,"url":null,"abstract":"The effectiveness of optical methods such as photodynamic therapy (PDT) depends on the amount of light distribution within the tissue to aid their potential for early cancer detection in a quantitative and non-invasive manner. Knowledge of the effective attenuation coefficient and penetration depth for the laser light is crucial to ensuring that the tumour tissue receives adequate optical energy. This study investigated the effective attenuation coefficient and penetration depth of He–Ne 630 nm red laser light in polyvinyl alcohol slime glue phantoms simulating human brain tumour tissues. The effective attenuation coefficient (μeff) and penetration depth (δ) were deduced from the absorption coefficient (μa), scattering coefficient (μs), and anisotropy factor (g) obtained from the Henyey–Greenstein (H–G) function by collimated laser beam measurements. We found that the effective attenuation coefficient and penetration depth were 0.25 ± 0.02 mm−1 and 4.00 mm, respectively, in the simulated phantoms. These values were in reasonable agreement with values reported for malignant human brain tumour tissues in the literature. The constructed phantoms would be an excellent tool for the continued evaluation of PDT as an essential therapeutic procedure in cancer management.","PeriodicalId":54577,"journal":{"name":"Proceedings of the Estonian Academy of Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective attenuation coefficient and penetration depth of 630 nm laser light in polyvinyl alcohol slime glue phantoms simulating the human brain tumour\",\"authors\":\"B. Adeleye, N. Chetty, L. Ntombela\",\"doi\":\"10.3176/proc.2022.3.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effectiveness of optical methods such as photodynamic therapy (PDT) depends on the amount of light distribution within the tissue to aid their potential for early cancer detection in a quantitative and non-invasive manner. Knowledge of the effective attenuation coefficient and penetration depth for the laser light is crucial to ensuring that the tumour tissue receives adequate optical energy. This study investigated the effective attenuation coefficient and penetration depth of He–Ne 630 nm red laser light in polyvinyl alcohol slime glue phantoms simulating human brain tumour tissues. The effective attenuation coefficient (μeff) and penetration depth (δ) were deduced from the absorption coefficient (μa), scattering coefficient (μs), and anisotropy factor (g) obtained from the Henyey–Greenstein (H–G) function by collimated laser beam measurements. We found that the effective attenuation coefficient and penetration depth were 0.25 ± 0.02 mm−1 and 4.00 mm, respectively, in the simulated phantoms. These values were in reasonable agreement with values reported for malignant human brain tumour tissues in the literature. The constructed phantoms would be an excellent tool for the continued evaluation of PDT as an essential therapeutic procedure in cancer management.\",\"PeriodicalId\":54577,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3176/proc.2022.3.03\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3176/proc.2022.3.03","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effective attenuation coefficient and penetration depth of 630 nm laser light in polyvinyl alcohol slime glue phantoms simulating the human brain tumour
The effectiveness of optical methods such as photodynamic therapy (PDT) depends on the amount of light distribution within the tissue to aid their potential for early cancer detection in a quantitative and non-invasive manner. Knowledge of the effective attenuation coefficient and penetration depth for the laser light is crucial to ensuring that the tumour tissue receives adequate optical energy. This study investigated the effective attenuation coefficient and penetration depth of He–Ne 630 nm red laser light in polyvinyl alcohol slime glue phantoms simulating human brain tumour tissues. The effective attenuation coefficient (μeff) and penetration depth (δ) were deduced from the absorption coefficient (μa), scattering coefficient (μs), and anisotropy factor (g) obtained from the Henyey–Greenstein (H–G) function by collimated laser beam measurements. We found that the effective attenuation coefficient and penetration depth were 0.25 ± 0.02 mm−1 and 4.00 mm, respectively, in the simulated phantoms. These values were in reasonable agreement with values reported for malignant human brain tumour tissues in the literature. The constructed phantoms would be an excellent tool for the continued evaluation of PDT as an essential therapeutic procedure in cancer management.
期刊介绍:
The Proceedings of the Estonian Academy of Sciences is an international scientific open access journal published by the Estonian Academy of Sciences in collaboration with the University of Tartu, Tallinn University of Technology, Tallinn University, and the Estonian University of Life Sciences.
The journal publishes primary research and review papers in the English language. All articles are provided with short Estonian summaries.
All papers to be published in the journal are peer reviewed internationally.
The journal is open to word-wide scientific community for publications in all fields of science represented at the Estonian Academy of Sciences and having certain connection with our part of the world, North Europe and the Baltic area in particular.