Maxence Chaverot, Maxime Carré, M. Jourlin, A. Bensrhair, R. Grisel
{"title":"热图像中小目标检测的改进","authors":"Maxence Chaverot, Maxime Carré, M. Jourlin, A. Bensrhair, R. Grisel","doi":"10.3233/ica-230715","DOIUrl":null,"url":null,"abstract":"Thermal images are widely used for various applications such as safety, surveillance, and Advanced Driver Assistance Systems (ADAS). However, these images typically have low contrast, blurred aspect, and low resolution, making it difficult to detect distant and small-sized objects. To address these issues, this paper explores various preprocessing algorithms to improve the performance of already trained object detection networks. Specifically, mathematical morphology is used to favor the detection of small bright objects, while deblurring and super-resolution techniques are employed to enhance the image quality. The Logarithmic Image Processing (LIP) framework is chosen to perform mathematical morphology, as it is consistent with the Human Visual System. The efficacy of the proposed algorithms is evaluated on the FLIR dataset, with a sub-base focused on images containing distant objects. The mean Average-Precision (mAP) score is computed to objectively evaluate the results, showing a significant improvement in the detection of small objects in thermal images using CNNs such as YOLOv4 and EfficientDet.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of small objects detection in thermal images\",\"authors\":\"Maxence Chaverot, Maxime Carré, M. Jourlin, A. Bensrhair, R. Grisel\",\"doi\":\"10.3233/ica-230715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal images are widely used for various applications such as safety, surveillance, and Advanced Driver Assistance Systems (ADAS). However, these images typically have low contrast, blurred aspect, and low resolution, making it difficult to detect distant and small-sized objects. To address these issues, this paper explores various preprocessing algorithms to improve the performance of already trained object detection networks. Specifically, mathematical morphology is used to favor the detection of small bright objects, while deblurring and super-resolution techniques are employed to enhance the image quality. The Logarithmic Image Processing (LIP) framework is chosen to perform mathematical morphology, as it is consistent with the Human Visual System. The efficacy of the proposed algorithms is evaluated on the FLIR dataset, with a sub-base focused on images containing distant objects. The mean Average-Precision (mAP) score is computed to objectively evaluate the results, showing a significant improvement in the detection of small objects in thermal images using CNNs such as YOLOv4 and EfficientDet.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-230715\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-230715","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improvement of small objects detection in thermal images
Thermal images are widely used for various applications such as safety, surveillance, and Advanced Driver Assistance Systems (ADAS). However, these images typically have low contrast, blurred aspect, and low resolution, making it difficult to detect distant and small-sized objects. To address these issues, this paper explores various preprocessing algorithms to improve the performance of already trained object detection networks. Specifically, mathematical morphology is used to favor the detection of small bright objects, while deblurring and super-resolution techniques are employed to enhance the image quality. The Logarithmic Image Processing (LIP) framework is chosen to perform mathematical morphology, as it is consistent with the Human Visual System. The efficacy of the proposed algorithms is evaluated on the FLIR dataset, with a sub-base focused on images containing distant objects. The mean Average-Precision (mAP) score is computed to objectively evaluate the results, showing a significant improvement in the detection of small objects in thermal images using CNNs such as YOLOv4 and EfficientDet.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.