Leandro Ruiz, S. Díaz, Jose M. Gonzalez, Francisco Cavas-Martínez
{"title":"利用深度神经网络提高飞机制造自动化过程的竞争力","authors":"Leandro Ruiz, S. Díaz, Jose M. Gonzalez, Francisco Cavas-Martínez","doi":"10.3233/ica-230711","DOIUrl":null,"url":null,"abstract":"The accuracy and reliability requirements in aerospace manufacturing processes are some of the most demanding in industry. One of the first steps is detection and precise measurement using artificial vision models to accurately process the part. However, these systems require complex adjustments and do not work correctly in uncontrolled scenarios, but require manual supervision, which reduces the autonomy of automated machinery. To solve these problems, this paper proposes a convolutional neural network for the detection and measurement of drills and other fixation elements in an uncontrolled industrial manufacturing environment. In addition, a fine-tuning algorithm is applied to the results obtained from the network, and a new metric is defined to evaluate the quality of detection. The efficiency and robustness of the proposed method were verified in a real production environment, with 99.7% precision, 97.6% recall and an overall quality factor of 96.0%. The reduction in operator intervention went from 13.3% to 0.6%. The presented work will allow the competitiveness of aircraft component manufacturing processes to increase, and working environments will be safer and more efficient.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"30 1","pages":"341-352"},"PeriodicalIF":5.8000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the competitiveness of aircraft manufacturing automated processes by a deep neural network\",\"authors\":\"Leandro Ruiz, S. Díaz, Jose M. Gonzalez, Francisco Cavas-Martínez\",\"doi\":\"10.3233/ica-230711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy and reliability requirements in aerospace manufacturing processes are some of the most demanding in industry. One of the first steps is detection and precise measurement using artificial vision models to accurately process the part. However, these systems require complex adjustments and do not work correctly in uncontrolled scenarios, but require manual supervision, which reduces the autonomy of automated machinery. To solve these problems, this paper proposes a convolutional neural network for the detection and measurement of drills and other fixation elements in an uncontrolled industrial manufacturing environment. In addition, a fine-tuning algorithm is applied to the results obtained from the network, and a new metric is defined to evaluate the quality of detection. The efficiency and robustness of the proposed method were verified in a real production environment, with 99.7% precision, 97.6% recall and an overall quality factor of 96.0%. The reduction in operator intervention went from 13.3% to 0.6%. The presented work will allow the competitiveness of aircraft component manufacturing processes to increase, and working environments will be safer and more efficient.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"30 1\",\"pages\":\"341-352\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-230711\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-230711","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving the competitiveness of aircraft manufacturing automated processes by a deep neural network
The accuracy and reliability requirements in aerospace manufacturing processes are some of the most demanding in industry. One of the first steps is detection and precise measurement using artificial vision models to accurately process the part. However, these systems require complex adjustments and do not work correctly in uncontrolled scenarios, but require manual supervision, which reduces the autonomy of automated machinery. To solve these problems, this paper proposes a convolutional neural network for the detection and measurement of drills and other fixation elements in an uncontrolled industrial manufacturing environment. In addition, a fine-tuning algorithm is applied to the results obtained from the network, and a new metric is defined to evaluate the quality of detection. The efficiency and robustness of the proposed method were verified in a real production environment, with 99.7% precision, 97.6% recall and an overall quality factor of 96.0%. The reduction in operator intervention went from 13.3% to 0.6%. The presented work will allow the competitiveness of aircraft component manufacturing processes to increase, and working environments will be safer and more efficient.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.