普洛金猜想的一个证明

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yinbin Lei, Mao-kang Luo
{"title":"普洛金猜想的一个证明","authors":"Yinbin Lei, Mao-kang Luo","doi":"10.3233/FI-2009-0076","DOIUrl":null,"url":null,"abstract":"In 1978, G. Plotkin [7] conjectured that for the three-element truthvalue dcpo T, if κ > ω then the function space [T$^{κ}$ → T$^{κ}$] is not a retract of T$^{κ}$. In this short paper, we constructively prove a stronger result that if κ > ω then the function space [T$^{κ}$ → T$^{κ}$] is not a retract of the Cartesian product of any family of finite posets. Thus Plotkin's Conjecture is proved to be correct.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2009-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/FI-2009-0076","citationCount":"1","resultStr":"{\"title\":\"A Proof of Plotkin's Conjecture\",\"authors\":\"Yinbin Lei, Mao-kang Luo\",\"doi\":\"10.3233/FI-2009-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1978, G. Plotkin [7] conjectured that for the three-element truthvalue dcpo T, if κ > ω then the function space [T$^{κ}$ → T$^{κ}$] is not a retract of T$^{κ}$. In this short paper, we constructively prove a stronger result that if κ > ω then the function space [T$^{κ}$ → T$^{κ}$] is not a retract of the Cartesian product of any family of finite posets. Thus Plotkin's Conjecture is proved to be correct.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2009-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/FI-2009-0076\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2009-0076\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2009-0076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

1978年G. Plotkin[7]推测,对于三元真值dcpo T,若κ > ω,则函数空间[T$^{κ}$→T$^{κ}$]不是T$^{κ}$的缩回。本文构造性地证明了一个更强的结果,即如果κ > ω,则函数空间[T$^{κ}$→T$^{κ}$]不是任意有限偏集族的笛卡尔积的缩回。由此证明普洛特金猜想是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proof of Plotkin's Conjecture
In 1978, G. Plotkin [7] conjectured that for the three-element truthvalue dcpo T, if κ > ω then the function space [T$^{κ}$ → T$^{κ}$] is not a retract of T$^{κ}$. In this short paper, we constructively prove a stronger result that if κ > ω then the function space [T$^{κ}$ → T$^{κ}$] is not a retract of the Cartesian product of any family of finite posets. Thus Plotkin's Conjecture is proved to be correct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamenta Informaticae
Fundamenta Informaticae 工程技术-计算机:软件工程
CiteScore
2.00
自引率
0.00%
发文量
61
审稿时长
9.8 months
期刊介绍: Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing: solutions by mathematical methods of problems emerging in computer science solutions of mathematical problems inspired by computer science. Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, algebraic and categorical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信