利用深度学习方法检测圣训的真实性

Q4 Multidisciplinary
Eshrag A. Refaee
{"title":"利用深度学习方法检测圣训的真实性","authors":"Eshrag A. Refaee","doi":"10.37575/b/sci/210084","DOIUrl":null,"url":null,"abstract":"Hadith is a collection of texts containing sayings of the prophet Muhammad, which, along with accounts of his daily practice, constitute the second major source of legislation for Muslims after the Holy Koran. The Hadith collection comprises thousands of text pieces transferred over the years by many narrators with varying degrees of credibility. Hadith scholars are faced with the challenge of assessing the degree of a specific Hadith’s authenticity to classify the Hadith as Sahih (fully authentic and accepted) or Daif (rejected). Automatic Hadith classification has been addressed in the literature; however, the results vary and are not directly comparable, as no dataset has been made available for benchmarking. In addition, no previous work has utilised deep-learning (DL) approaches for Hadith classification. This work contributes by 1) collecting and publicly releasing a benchmark Hadith dataset of almost 4,000 Hadith texts to facilitate future research, 2) exploring DL model performance on binary Hadith classification tasks, and 3) benchmarking traditional machine learning against DL models. Our best results were recorded with an ARBERT DL model that provided an accuracy score of 91.56%. KEYWORDS Hadith classification; deep learning; Classical Arabic; machine learning; Hadith science; Hadith authenticity","PeriodicalId":39024,"journal":{"name":"Scientific Journal of King Faisal University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Hadith Authenticity Using a Deep-learning Approach\",\"authors\":\"Eshrag A. Refaee\",\"doi\":\"10.37575/b/sci/210084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hadith is a collection of texts containing sayings of the prophet Muhammad, which, along with accounts of his daily practice, constitute the second major source of legislation for Muslims after the Holy Koran. The Hadith collection comprises thousands of text pieces transferred over the years by many narrators with varying degrees of credibility. Hadith scholars are faced with the challenge of assessing the degree of a specific Hadith’s authenticity to classify the Hadith as Sahih (fully authentic and accepted) or Daif (rejected). Automatic Hadith classification has been addressed in the literature; however, the results vary and are not directly comparable, as no dataset has been made available for benchmarking. In addition, no previous work has utilised deep-learning (DL) approaches for Hadith classification. This work contributes by 1) collecting and publicly releasing a benchmark Hadith dataset of almost 4,000 Hadith texts to facilitate future research, 2) exploring DL model performance on binary Hadith classification tasks, and 3) benchmarking traditional machine learning against DL models. Our best results were recorded with an ARBERT DL model that provided an accuracy score of 91.56%. KEYWORDS Hadith classification; deep learning; Classical Arabic; machine learning; Hadith science; Hadith authenticity\",\"PeriodicalId\":39024,\"journal\":{\"name\":\"Scientific Journal of King Faisal University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of King Faisal University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37575/b/sci/210084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of King Faisal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37575/b/sci/210084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

《圣训》是包含先知穆罕默德语录的文本集合,连同他的日常实践,构成了穆斯林继《古兰经》之后的第二大法律来源。《圣训集》由数千篇文字组成,这些文字是许多叙述者多年来以不同程度的可信度转述的。圣训学者面临着评估特定圣训真实性程度的挑战,将圣训分类为Sahih(完全真实并被接受)或Daif(被拒绝)。自动圣训分类已经在文献中提到;然而,结果各不相同,不能直接比较,因为没有数据集可用于基准测试。此外,以前的工作没有使用深度学习(DL)方法进行哈迪斯分类。这项工作的贡献包括:1)收集并公开发布一个包含近4000个Hadith文本的基准Hadith数据集,以促进未来的研究;2)探索深度学习模型在二元Hadith分类任务上的性能;3)针对深度学习模型对传统机器学习进行基准测试。我们最好的结果是用ARBERT DL模型记录的,它提供了91.56%的准确率。KEYWORDSHadith分类;深度学习;古典阿拉伯语;机器学习;穆罕默德言行录科学;穆罕默德言行录真实性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Hadith Authenticity Using a Deep-learning Approach
Hadith is a collection of texts containing sayings of the prophet Muhammad, which, along with accounts of his daily practice, constitute the second major source of legislation for Muslims after the Holy Koran. The Hadith collection comprises thousands of text pieces transferred over the years by many narrators with varying degrees of credibility. Hadith scholars are faced with the challenge of assessing the degree of a specific Hadith’s authenticity to classify the Hadith as Sahih (fully authentic and accepted) or Daif (rejected). Automatic Hadith classification has been addressed in the literature; however, the results vary and are not directly comparable, as no dataset has been made available for benchmarking. In addition, no previous work has utilised deep-learning (DL) approaches for Hadith classification. This work contributes by 1) collecting and publicly releasing a benchmark Hadith dataset of almost 4,000 Hadith texts to facilitate future research, 2) exploring DL model performance on binary Hadith classification tasks, and 3) benchmarking traditional machine learning against DL models. Our best results were recorded with an ARBERT DL model that provided an accuracy score of 91.56%. KEYWORDS Hadith classification; deep learning; Classical Arabic; machine learning; Hadith science; Hadith authenticity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Journal of King Faisal University
Scientific Journal of King Faisal University Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: The scientific Journal of King Faisal University is a biannual refereed scientific journal issued under the guidance of the University Scientific Council. The journal also publishes special and supplementary issues when needed. The first volume was published on 1420H-2000G. The journal publishes two separate issues: Humanities and Management Sciences issue, classified in the Arab Impact Factor index, and Basic and Applied Sciences issue, on June and December, and indexed in (C​ABI) and (SCOPUS) international databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信