qtag模块的Nice碱基

Q4 Multidisciplinary
Fahad Sikander, Tanveer Fatima, Ayazul Hasan
{"title":"qtag模块的Nice碱基","authors":"Fahad Sikander, Tanveer Fatima, Ayazul Hasan","doi":"10.37575/b/sci/210031","DOIUrl":null,"url":null,"abstract":"A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of universal modules. In this paper, we investigate the class of QTAG-modules having nice basis. It is proved that if H_ω (M) is bounded then M has a bounded nice basis and if H_ω (M) is a direct sum of uniserial modules, then M has a nice basis. We also proved that if M is any QTAG-module, then M⊕D has a nice basis, where D is the h-divisible hull of H_ω (M).","PeriodicalId":39024,"journal":{"name":"Scientific Journal of King Faisal University","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nice Bases of QTAG-Modules\",\"authors\":\"Fahad Sikander, Tanveer Fatima, Ayazul Hasan\",\"doi\":\"10.37575/b/sci/210031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of universal modules. In this paper, we investigate the class of QTAG-modules having nice basis. It is proved that if H_ω (M) is bounded then M has a bounded nice basis and if H_ω (M) is a direct sum of uniserial modules, then M has a nice basis. We also proved that if M is any QTAG-module, then M⊕D has a nice basis, where D is the h-divisible hull of H_ω (M).\",\"PeriodicalId\":39024,\"journal\":{\"name\":\"Scientific Journal of King Faisal University\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of King Faisal University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37575/b/sci/210031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of King Faisal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37575/b/sci/210031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

如果M的任何同态像的每一个有限生成的子模是泛模的直和,则在具有单位的结合环R上的模M是qtag -模。本文研究了一类具有良好基的qtag -模块。证明了如果H_ω (M)是有界的,则M具有有界的良好基;如果H_ω (M)是单列模的直接和,则M具有良好基。我们还证明了如果M是任意qtag模,则M⊕D有一个很好的基,其中D是H_ω (M)的h可整除壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nice Bases of QTAG-Modules
A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of universal modules. In this paper, we investigate the class of QTAG-modules having nice basis. It is proved that if H_ω (M) is bounded then M has a bounded nice basis and if H_ω (M) is a direct sum of uniserial modules, then M has a nice basis. We also proved that if M is any QTAG-module, then M⊕D has a nice basis, where D is the h-divisible hull of H_ω (M).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Journal of King Faisal University
Scientific Journal of King Faisal University Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: The scientific Journal of King Faisal University is a biannual refereed scientific journal issued under the guidance of the University Scientific Council. The journal also publishes special and supplementary issues when needed. The first volume was published on 1420H-2000G. The journal publishes two separate issues: Humanities and Management Sciences issue, classified in the Arab Impact Factor index, and Basic and Applied Sciences issue, on June and December, and indexed in (C​ABI) and (SCOPUS) international databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信