激光诱导石墨烯等离子体的光谱研究

Q4 Multidisciplinary
M. Khalaf
{"title":"激光诱导石墨烯等离子体的光谱研究","authors":"M. Khalaf","doi":"10.37575/B/SCI/0053","DOIUrl":null,"url":null,"abstract":"In this paper, graphene plasma was obtained through the interaction of the fundamental radiation from a pulsed Nd:YAG laser at the fundamental wavelength of 1064 nm focused onto a solid plane of graphene material. This reaction was carried out under conditions of an atmospheric status. The resulting plasma was tested using an optical emission spectroscopy technique. The temperature of the electrons is calculated by the tow line ratio of C I and C II emission lines singly ionised, and the density of the plasma electron is calculated with Saha-Boltzmann equation. The upper limit of the electron temperature was approximately 1.544 eV. The corresponding electron density was 11.5×1015 cm-3. Then the electron temperature decreased when the energy was 300 mJ and it was near 1.462 eV, corresponding to the density of those electrons 8.7×1015 cm-3.","PeriodicalId":39024,"journal":{"name":"Scientific Journal of King Faisal University","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectroscopic Investigation of Laser-Induced Graphene Plasma\",\"authors\":\"M. Khalaf\",\"doi\":\"10.37575/B/SCI/0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, graphene plasma was obtained through the interaction of the fundamental radiation from a pulsed Nd:YAG laser at the fundamental wavelength of 1064 nm focused onto a solid plane of graphene material. This reaction was carried out under conditions of an atmospheric status. The resulting plasma was tested using an optical emission spectroscopy technique. The temperature of the electrons is calculated by the tow line ratio of C I and C II emission lines singly ionised, and the density of the plasma electron is calculated with Saha-Boltzmann equation. The upper limit of the electron temperature was approximately 1.544 eV. The corresponding electron density was 11.5×1015 cm-3. Then the electron temperature decreased when the energy was 300 mJ and it was near 1.462 eV, corresponding to the density of those electrons 8.7×1015 cm-3.\",\"PeriodicalId\":39024,\"journal\":{\"name\":\"Scientific Journal of King Faisal University\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of King Faisal University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37575/B/SCI/0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of King Faisal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37575/B/SCI/0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

摘要

本文利用1064 nm的脉冲Nd:YAG激光聚焦在石墨烯材料的固体平面上,与基波相互作用获得了石墨烯等离子体。这个反应是在常压条件下进行的。利用光学发射光谱技术对产生的等离子体进行了测试。电子的温度由单电离的C I和C II发射线的拖线比计算,等离子体电子的密度由Saha-Boltzmann方程计算。电子温度的上限约为1.544 eV。对应的电子密度为11.5×1015 cm-3。当能量为300 mJ,接近1.462 eV时,电子温度下降,对应于电子密度8.7×1015 cm-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectroscopic Investigation of Laser-Induced Graphene Plasma
In this paper, graphene plasma was obtained through the interaction of the fundamental radiation from a pulsed Nd:YAG laser at the fundamental wavelength of 1064 nm focused onto a solid plane of graphene material. This reaction was carried out under conditions of an atmospheric status. The resulting plasma was tested using an optical emission spectroscopy technique. The temperature of the electrons is calculated by the tow line ratio of C I and C II emission lines singly ionised, and the density of the plasma electron is calculated with Saha-Boltzmann equation. The upper limit of the electron temperature was approximately 1.544 eV. The corresponding electron density was 11.5×1015 cm-3. Then the electron temperature decreased when the energy was 300 mJ and it was near 1.462 eV, corresponding to the density of those electrons 8.7×1015 cm-3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Journal of King Faisal University
Scientific Journal of King Faisal University Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: The scientific Journal of King Faisal University is a biannual refereed scientific journal issued under the guidance of the University Scientific Council. The journal also publishes special and supplementary issues when needed. The first volume was published on 1420H-2000G. The journal publishes two separate issues: Humanities and Management Sciences issue, classified in the Arab Impact Factor index, and Basic and Applied Sciences issue, on June and December, and indexed in (C​ABI) and (SCOPUS) international databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信