基于树的结构方程模型参数匹配

Sarfaraz Serang, James Sears
{"title":"基于树的结构方程模型参数匹配","authors":"Sarfaraz Serang, James Sears","doi":"10.35566/jbds/v1n2/p3","DOIUrl":null,"url":null,"abstract":"Understanding causal effects of a treatment is often of interest in the social sciences. When treatments cannot be randomly assigned, researchers must ensure that treated and untreated participants are balanced on covariates before estimating treatment effects. Conventional practices are useful in matching such that treated and untreated participants have similar average values on their covariates. However, situations arise in which a researcher may instead want to match on model parameters. We propose an algorithm, Causal Mplus Trees, which uses decision trees to match on structural equation model parameters and estimates conditional average treatment effects in each node. We provide a proof of concept using two small simulation studies and demonstrate its application using COVID-19 data.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree-based Matching on Structural Equation Model Parameters\",\"authors\":\"Sarfaraz Serang, James Sears\",\"doi\":\"10.35566/jbds/v1n2/p3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding causal effects of a treatment is often of interest in the social sciences. When treatments cannot be randomly assigned, researchers must ensure that treated and untreated participants are balanced on covariates before estimating treatment effects. Conventional practices are useful in matching such that treated and untreated participants have similar average values on their covariates. However, situations arise in which a researcher may instead want to match on model parameters. We propose an algorithm, Causal Mplus Trees, which uses decision trees to match on structural equation model parameters and estimates conditional average treatment effects in each node. We provide a proof of concept using two small simulation studies and demonstrate its application using COVID-19 data.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v1n2/p3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v1n2/p3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解一种治疗的因果效应通常是社会科学的兴趣所在。当治疗不能随机分配时,研究人员必须确保在估计治疗效果之前,治疗和未治疗的参与者在协变量上是平衡的。传统做法在匹配这样的治疗和未治疗的参与者有相似的平均值在他们的协变量是有用的。然而,在研究人员可能想要匹配模型参数的情况下出现。我们提出了一种基于决策树匹配结构方程模型参数并估计每个节点的条件平均处理效果的算法——因果Mplus树。我们通过两个小型模拟研究提供了概念验证,并使用COVID-19数据演示了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree-based Matching on Structural Equation Model Parameters
Understanding causal effects of a treatment is often of interest in the social sciences. When treatments cannot be randomly assigned, researchers must ensure that treated and untreated participants are balanced on covariates before estimating treatment effects. Conventional practices are useful in matching such that treated and untreated participants have similar average values on their covariates. However, situations arise in which a researcher may instead want to match on model parameters. We propose an algorithm, Causal Mplus Trees, which uses decision trees to match on structural equation model parameters and estimates conditional average treatment effects in each node. We provide a proof of concept using two small simulation studies and demonstrate its application using COVID-19 data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信