基于观测值间直接依赖的广义Baum-Welch和Viterbi算法

IF 0.1 Q4 STATISTICS & PROBABILITY
Vahid Rezaei Tabar, D. Plewczyński, Hosna Fathipour
{"title":"基于观测值间直接依赖的广义Baum-Welch和Viterbi算法","authors":"Vahid Rezaei Tabar, D. Plewczyński, Hosna Fathipour","doi":"10.29252/jirss.17.2.10","DOIUrl":null,"url":null,"abstract":"The parameters of a Hidden Markov Model (HMM) are transition and emission probabilities. Both can be estimated using the Baum-Welch algorithm. The process of discovering the sequence of hidden states, given the sequence of observations, is performed by the Viterbi algorithm. In both Baum-Welch and Viterbi algorithms, it is assumed that, given the states, the observations are independent from each other. In this paper, we first consider the direct dependency between consecutive observations in the HMM, and then use conditional independence relations in the context of a Bayesian network which is a probabilistic graphical model for generalizing the Baum-Welch and Viterbi algorithms. We compare the performance of the generalized algorithms with the commonly used ones in simulation studies for synthetic data. We finally apply Corresponding Author: Vahid Rezaei Tabar (vhrezaei@gmail.com) Dariusz Plewczynski (dariuszplewczynski@cent.uw.edu.pl) Hosna Fathipour (hosnafathi@yahoo.com)","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized Baum-Welch and Viterbi Algorithms Based on the Direct Dependency among Observations\",\"authors\":\"Vahid Rezaei Tabar, D. Plewczyński, Hosna Fathipour\",\"doi\":\"10.29252/jirss.17.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parameters of a Hidden Markov Model (HMM) are transition and emission probabilities. Both can be estimated using the Baum-Welch algorithm. The process of discovering the sequence of hidden states, given the sequence of observations, is performed by the Viterbi algorithm. In both Baum-Welch and Viterbi algorithms, it is assumed that, given the states, the observations are independent from each other. In this paper, we first consider the direct dependency between consecutive observations in the HMM, and then use conditional independence relations in the context of a Bayesian network which is a probabilistic graphical model for generalizing the Baum-Welch and Viterbi algorithms. We compare the performance of the generalized algorithms with the commonly used ones in simulation studies for synthetic data. We finally apply Corresponding Author: Vahid Rezaei Tabar (vhrezaei@gmail.com) Dariusz Plewczynski (dariuszplewczynski@cent.uw.edu.pl) Hosna Fathipour (hosnafathi@yahoo.com)\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/jirss.17.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jirss.17.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

隐马尔可夫模型(HMM)的参数是转移概率和发射概率。两者都可以用鲍姆-韦尔奇算法来估计。在给定观测序列的情况下,发现隐藏状态序列的过程由Viterbi算法执行。在Baum-Welch和Viterbi算法中,假设给定状态,观测值彼此独立。在本文中,我们首先考虑HMM中连续观测值之间的直接依赖关系,然后在Bayesian网络的背景下使用条件独立关系,该网络是一种推广Baum-Welch和Viterbi算法的概率图模型。我们将广义算法与合成数据仿真研究中常用算法的性能进行了比较。通讯作者:Vahid Rezaei Tabar (vhrezaei@gmail.com) Dariusz Plewczynski (dariuszplewczynski@cent.uw.edu.pl) Hosna Fathipour (hosnafathi@yahoo.com)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Baum-Welch and Viterbi Algorithms Based on the Direct Dependency among Observations
The parameters of a Hidden Markov Model (HMM) are transition and emission probabilities. Both can be estimated using the Baum-Welch algorithm. The process of discovering the sequence of hidden states, given the sequence of observations, is performed by the Viterbi algorithm. In both Baum-Welch and Viterbi algorithms, it is assumed that, given the states, the observations are independent from each other. In this paper, we first consider the direct dependency between consecutive observations in the HMM, and then use conditional independence relations in the context of a Bayesian network which is a probabilistic graphical model for generalizing the Baum-Welch and Viterbi algorithms. We compare the performance of the generalized algorithms with the commonly used ones in simulation studies for synthetic data. We finally apply Corresponding Author: Vahid Rezaei Tabar (vhrezaei@gmail.com) Dariusz Plewczynski (dariuszplewczynski@cent.uw.edu.pl) Hosna Fathipour (hosnafathi@yahoo.com)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信