FTIR差分光谱在膜蛋白上的早期发展和应用:个人观点

IF 0.3 Q4 SPECTROSCOPY
K. Rothschild
{"title":"FTIR差分光谱在膜蛋白上的早期发展和应用:个人观点","authors":"K. Rothschild","doi":"10.3233/BSI-160148","DOIUrl":null,"url":null,"abstract":"Membrane proteins facilitate some of the most important cellular processes including energy conversion, ion trans- port and signal transduction. While conventional infrared absorption provides information about membrane protein secondary structure, a major challenge is to develop a dynamic picture of the functioning of membrane proteins at the molecular level. The introduction of FTIR difference spectroscopy around 1980 to study structural changes in membrane proteins along with a number of associated techniques including protein isotope labeling, site-directed mutagenesis, polarization dichroism, atten- uated total reflection and time-resolved spectroscopy have led to significant progress towards this goal. It is now possible to routinely detect conformational changes of individual amino acid residues, backbone peptides, binding ligands, chromophores and even internal water molecules under physiological conditions with time-resolution down to nanoseconds. The advent of ultrafast pulsed-IR lasers has pushed this time-resolution down to femtoseconds. The early development of FTIR difference spectroscopy as applied to membrane proteins with special focus on bacteriorhodopsin is reviewed from a personal perspective.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-160148","citationCount":"19","resultStr":"{\"title\":\"The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective\",\"authors\":\"K. Rothschild\",\"doi\":\"10.3233/BSI-160148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane proteins facilitate some of the most important cellular processes including energy conversion, ion trans- port and signal transduction. While conventional infrared absorption provides information about membrane protein secondary structure, a major challenge is to develop a dynamic picture of the functioning of membrane proteins at the molecular level. The introduction of FTIR difference spectroscopy around 1980 to study structural changes in membrane proteins along with a number of associated techniques including protein isotope labeling, site-directed mutagenesis, polarization dichroism, atten- uated total reflection and time-resolved spectroscopy have led to significant progress towards this goal. It is now possible to routinely detect conformational changes of individual amino acid residues, backbone peptides, binding ligands, chromophores and even internal water molecules under physiological conditions with time-resolution down to nanoseconds. The advent of ultrafast pulsed-IR lasers has pushed this time-resolution down to femtoseconds. The early development of FTIR difference spectroscopy as applied to membrane proteins with special focus on bacteriorhodopsin is reviewed from a personal perspective.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BSI-160148\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BSI-160148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BSI-160148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 19

摘要

膜蛋白促进一些最重要的细胞过程,包括能量转换,离子转运和信号转导。虽然传统的红外吸收提供了膜蛋白二级结构的信息,但一个主要的挑战是在分子水平上开发膜蛋白功能的动态图像。1980年前后,FTIR差分光谱学的引入,以及蛋白质同位素标记、定点诱变、极化二色性、衰减全反射和时间分辨光谱学等相关技术,使膜蛋白的结构变化研究取得了重大进展。现在可以在生理条件下常规检测单个氨基酸残基、主肽、结合配体、发色团甚至内部水分子的构象变化,时间分辨率可低至纳秒。超快脉冲红外激光器的出现将时间分辨率降低到了飞秒。从个人的角度综述了FTIR差分光谱技术在膜蛋白研究中的早期发展,特别是在细菌视紫红质方面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective
Membrane proteins facilitate some of the most important cellular processes including energy conversion, ion trans- port and signal transduction. While conventional infrared absorption provides information about membrane protein secondary structure, a major challenge is to develop a dynamic picture of the functioning of membrane proteins at the molecular level. The introduction of FTIR difference spectroscopy around 1980 to study structural changes in membrane proteins along with a number of associated techniques including protein isotope labeling, site-directed mutagenesis, polarization dichroism, atten- uated total reflection and time-resolved spectroscopy have led to significant progress towards this goal. It is now possible to routinely detect conformational changes of individual amino acid residues, backbone peptides, binding ligands, chromophores and even internal water molecules under physiological conditions with time-resolution down to nanoseconds. The advent of ultrafast pulsed-IR lasers has pushed this time-resolution down to femtoseconds. The early development of FTIR difference spectroscopy as applied to membrane proteins with special focus on bacteriorhodopsin is reviewed from a personal perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信