了解胆固醇在细胞生物力学和囊泡运输调节中的作用:成像的力量

IF 0.3 Q4 SPECTROSCOPY
L. O. Andrade
{"title":"了解胆固醇在细胞生物力学和囊泡运输调节中的作用:成像的力量","authors":"L. O. Andrade","doi":"10.3233/BSI-160157","DOIUrl":null,"url":null,"abstract":"Cholesterol is an important component of cell plasma membrane. Due to its chemical composition (long rigid hydrophobic chain and a small polar hydroxyl group), it fits most of its structure into the lipid bilayer, where its steroid rings are in close proximity and attracted to the hydrocarbon chains of neighboring lipids. This gives a condensing effect on the packing of lipids in cell membranes creating cholesterol-enriched regions called membrane rafts, which also congregate a lot of specific proteins. Membrane rafts have been shown to work as platforms involved with signaling in diverse cellular processes, such as immune regulation, cell cycle control, membrane trafficking and fusion events. A series of studies in the last two decades have linked many of these functions with the effects of membrane cholesterol content and rafts integrity on actin cytoskeleton organization, as well as its consequences in cellular biomechanics. This was possible by using microscopy techniques before and after manipulation of cholesterol content from cell plasma membrane, using agents that are able to sequester these molecules, such as cyclodextrins. In this review we’ll give a personal perspective on these studies and how microscopy techniques were important to unravel the effects of cholesterol on actin and cellular mechanics. We will also discuss how actin and cholesterol contributes to control cell secretion and vesicular trafficking.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-160157","citationCount":"25","resultStr":"{\"title\":\"Understanding the role of cholesterol in cellular biomechanics and regulation of vesicular trafficking: The power of imaging\",\"authors\":\"L. O. Andrade\",\"doi\":\"10.3233/BSI-160157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cholesterol is an important component of cell plasma membrane. Due to its chemical composition (long rigid hydrophobic chain and a small polar hydroxyl group), it fits most of its structure into the lipid bilayer, where its steroid rings are in close proximity and attracted to the hydrocarbon chains of neighboring lipids. This gives a condensing effect on the packing of lipids in cell membranes creating cholesterol-enriched regions called membrane rafts, which also congregate a lot of specific proteins. Membrane rafts have been shown to work as platforms involved with signaling in diverse cellular processes, such as immune regulation, cell cycle control, membrane trafficking and fusion events. A series of studies in the last two decades have linked many of these functions with the effects of membrane cholesterol content and rafts integrity on actin cytoskeleton organization, as well as its consequences in cellular biomechanics. This was possible by using microscopy techniques before and after manipulation of cholesterol content from cell plasma membrane, using agents that are able to sequester these molecules, such as cyclodextrins. In this review we’ll give a personal perspective on these studies and how microscopy techniques were important to unravel the effects of cholesterol on actin and cellular mechanics. We will also discuss how actin and cholesterol contributes to control cell secretion and vesicular trafficking.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BSI-160157\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BSI-160157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BSI-160157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 25

摘要

胆固醇是细胞膜的重要组成部分。由于它的化学成分(长刚性疏水链和小极性羟基),它的大部分结构适合于脂质双分子层,在脂质双分子层中,它的类固醇环非常接近并被邻近脂质的碳氢链吸引。这对细胞膜中的脂质堆积产生了冷凝作用,形成了富含胆固醇的区域,称为膜筏,它也聚集了许多特定的蛋白质。膜筏已被证明是参与多种细胞过程信号传递的平台,如免疫调节、细胞周期控制、膜运输和融合事件。过去二十年的一系列研究已经将许多这些功能与膜胆固醇含量和筏完整性对肌动蛋白细胞骨架组织的影响以及其在细胞生物力学中的影响联系起来。通过使用能够隔离这些分子的试剂,如环糊精,在处理细胞膜上的胆固醇含量前后使用显微镜技术,这是可能的。在这篇综述中,我们将给出这些研究的个人观点,以及显微镜技术如何在揭示胆固醇对肌动蛋白和细胞力学的影响方面发挥重要作用。我们还将讨论肌动蛋白和胆固醇如何有助于控制细胞分泌和囊泡运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the role of cholesterol in cellular biomechanics and regulation of vesicular trafficking: The power of imaging
Cholesterol is an important component of cell plasma membrane. Due to its chemical composition (long rigid hydrophobic chain and a small polar hydroxyl group), it fits most of its structure into the lipid bilayer, where its steroid rings are in close proximity and attracted to the hydrocarbon chains of neighboring lipids. This gives a condensing effect on the packing of lipids in cell membranes creating cholesterol-enriched regions called membrane rafts, which also congregate a lot of specific proteins. Membrane rafts have been shown to work as platforms involved with signaling in diverse cellular processes, such as immune regulation, cell cycle control, membrane trafficking and fusion events. A series of studies in the last two decades have linked many of these functions with the effects of membrane cholesterol content and rafts integrity on actin cytoskeleton organization, as well as its consequences in cellular biomechanics. This was possible by using microscopy techniques before and after manipulation of cholesterol content from cell plasma membrane, using agents that are able to sequester these molecules, such as cyclodextrins. In this review we’ll give a personal perspective on these studies and how microscopy techniques were important to unravel the effects of cholesterol on actin and cellular mechanics. We will also discuss how actin and cholesterol contributes to control cell secretion and vesicular trafficking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信