CO2和氮浓度升高对小麦(Triticum aestivum L.)籽粒离子、籽粒形态及相关基因表达的影响

IF 1 4区 生物学 Q3 PLANT SCIENCES
A. Sinto, L. Sathee, D. Singh, S. Jha, Sandeep B. Adavi, R. Kumar, V. Chinnusamy, Madanpal Singh
{"title":"CO2和氮浓度升高对小麦(Triticum aestivum L.)籽粒离子、籽粒形态及相关基因表达的影响","authors":"A. Sinto, L. Sathee, D. Singh, S. Jha, Sandeep B. Adavi, R. Kumar, V. Chinnusamy, Madanpal Singh","doi":"10.31742/ijgpb.82.2.2","DOIUrl":null,"url":null,"abstract":"The rise in atmospheric CO2 levels impacts humankind by threatening food and nutritional security. The strong correlation between crop yield and grain weight in cereals is an essential component of yield stability. Further, improving grain protein and mineral nutrient content is a crucial breeding target for cereal crops. The study was performed to understand the interactive effects of elevated CO2 (EC) and nitrogen (N) fertilization on grain ionome, grain yield parameters, grain morphology, and the expression of genes related to grain morphology. The changes in ionome and grain parameters were examined in response to two N levels optimal N (ON: 500 mg/pot) and high N (HN: 625 mg/pot) along with atmospheric CO2 enrichment [ambient (CO2) of 400 ±10 ppm and elevated (CO2) of 700 ±10 ppm]. Grain ionome (N, K, Ca and Fe) showed a general decrease in EC-grown wheat plants. The expression of genes related to grain length (TaGL3 and TaGL7) were upregulated, and those genes related to grain width (TaGW2 and TaGW6) were downregulated under EC in maturing spikelet of wheat. In the case of TaSnRK2, the expression was promoted by EC in HN treatment. The complex regulation of source and sink-associated gene transcript abundance indicates an EC mediated alteration in N and sugar signalling in wheat.","PeriodicalId":13321,"journal":{"name":"Indian Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated CO2 and Nitrogen dose affect grain ionome, grain morphology and associated gene expression in wheat (Triticum aestivum L.)\",\"authors\":\"A. Sinto, L. Sathee, D. Singh, S. Jha, Sandeep B. Adavi, R. Kumar, V. Chinnusamy, Madanpal Singh\",\"doi\":\"10.31742/ijgpb.82.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise in atmospheric CO2 levels impacts humankind by threatening food and nutritional security. The strong correlation between crop yield and grain weight in cereals is an essential component of yield stability. Further, improving grain protein and mineral nutrient content is a crucial breeding target for cereal crops. The study was performed to understand the interactive effects of elevated CO2 (EC) and nitrogen (N) fertilization on grain ionome, grain yield parameters, grain morphology, and the expression of genes related to grain morphology. The changes in ionome and grain parameters were examined in response to two N levels optimal N (ON: 500 mg/pot) and high N (HN: 625 mg/pot) along with atmospheric CO2 enrichment [ambient (CO2) of 400 ±10 ppm and elevated (CO2) of 700 ±10 ppm]. Grain ionome (N, K, Ca and Fe) showed a general decrease in EC-grown wheat plants. The expression of genes related to grain length (TaGL3 and TaGL7) were upregulated, and those genes related to grain width (TaGW2 and TaGW6) were downregulated under EC in maturing spikelet of wheat. In the case of TaSnRK2, the expression was promoted by EC in HN treatment. The complex regulation of source and sink-associated gene transcript abundance indicates an EC mediated alteration in N and sugar signalling in wheat.\",\"PeriodicalId\":13321,\"journal\":{\"name\":\"Indian Journal of Genetics and Plant Breeding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Genetics and Plant Breeding\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.31742/ijgpb.82.2.2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Genetics and Plant Breeding","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.31742/ijgpb.82.2.2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气中二氧化碳浓度的上升通过威胁粮食和营养安全来影响人类。谷物产量与粒重之间的强相关性是产量稳定的重要组成部分。此外,提高籽粒蛋白质和矿质养分含量是谷类作物育种的重要目标。本研究旨在了解CO2 (EC)和氮(N)施肥对籽粒离子、籽粒产量参数、籽粒形态和籽粒形态相关基因表达的交互作用。研究了最佳N (ON: 500 mg/pot)和高N (HN: 625 mg/pot)两个N水平以及大气CO2富集[环境(CO2) 400±10 ppm和升高(CO2) 700±10 ppm]对离子素和籽粒参数的响应。籽粒离子素(N、K、Ca和Fe)在ec栽培的小麦植株中普遍降低。EC处理下,小麦成熟小穗中与粒长相关的基因TaGL3和TaGL7表达上调,与粒宽相关的基因TaGW2和TaGW6表达下调。在HN治疗中,EC促进了TaSnRK2的表达。来源和汇相关基因转录丰度的复杂调控表明,EC介导了小麦氮和糖信号的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevated CO2 and Nitrogen dose affect grain ionome, grain morphology and associated gene expression in wheat (Triticum aestivum L.)
The rise in atmospheric CO2 levels impacts humankind by threatening food and nutritional security. The strong correlation between crop yield and grain weight in cereals is an essential component of yield stability. Further, improving grain protein and mineral nutrient content is a crucial breeding target for cereal crops. The study was performed to understand the interactive effects of elevated CO2 (EC) and nitrogen (N) fertilization on grain ionome, grain yield parameters, grain morphology, and the expression of genes related to grain morphology. The changes in ionome and grain parameters were examined in response to two N levels optimal N (ON: 500 mg/pot) and high N (HN: 625 mg/pot) along with atmospheric CO2 enrichment [ambient (CO2) of 400 ±10 ppm and elevated (CO2) of 700 ±10 ppm]. Grain ionome (N, K, Ca and Fe) showed a general decrease in EC-grown wheat plants. The expression of genes related to grain length (TaGL3 and TaGL7) were upregulated, and those genes related to grain width (TaGW2 and TaGW6) were downregulated under EC in maturing spikelet of wheat. In the case of TaSnRK2, the expression was promoted by EC in HN treatment. The complex regulation of source and sink-associated gene transcript abundance indicates an EC mediated alteration in N and sugar signalling in wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Advance the cause of genetics and plant breeding and to encourage and promote study and research in these disciplines in the service of agriculture; to disseminate the knowledge of genetics and plant breeding; provide facilities for association and conference among students of genetics and plant breeding and for encouragement of close relationship between them and those in the related sciences; advocate policies in the interest of the nation in the field of genetics and plant breeding, and facilitate international cooperation in the field of genetics and plant breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信