{"title":"小麦胁迫诱导的WRKY转录因子TaWRKY32赋予水稻抗旱性","authors":"E. Darwish","doi":"10.35495/ajab.2020.06.371","DOIUrl":null,"url":null,"abstract":"WRKY transcription factors group play a significant role in stress signalling pathway. In this study, a WRKY member of bread wheat, TaWRKY , was cloned and its function in response to water stress conditions was studied. Expression analysis revealed that TaWRKY32 mainly expressed when plants were subjected to PEG, NaCl, and cold and probably participate in ABA dependent signalling pathways. This study was done to elucidate the role in transgenic breeding, TaWRK32 was transferred to rice plants under CaMV-35S promoter. Overexpression of TaWRK32 lead to enhanced fresh shoot and root weight at seedling stage when compared to wild type (WT). Moreover, transgenic rice lines under water stress, showed greater recovery rate when compared to WT. Higher values of cell membrane stability and lower Chl a/b ratio of transgenic rice lines under water stress conditions markedly indicated the importance of TaWRKY32 under water stress conditions. These results suggested that TaWRK32 has multifunctional and might be an instrumental tool in breeding for transgenic plants for improved water stress tolerance in wheat.","PeriodicalId":8506,"journal":{"name":"Asian Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A wheat stress induced WRKY transcription factor TaWRKY32 confers drought stress tolerance in Oryza sativa\",\"authors\":\"E. Darwish\",\"doi\":\"10.35495/ajab.2020.06.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WRKY transcription factors group play a significant role in stress signalling pathway. In this study, a WRKY member of bread wheat, TaWRKY , was cloned and its function in response to water stress conditions was studied. Expression analysis revealed that TaWRKY32 mainly expressed when plants were subjected to PEG, NaCl, and cold and probably participate in ABA dependent signalling pathways. This study was done to elucidate the role in transgenic breeding, TaWRK32 was transferred to rice plants under CaMV-35S promoter. Overexpression of TaWRK32 lead to enhanced fresh shoot and root weight at seedling stage when compared to wild type (WT). Moreover, transgenic rice lines under water stress, showed greater recovery rate when compared to WT. Higher values of cell membrane stability and lower Chl a/b ratio of transgenic rice lines under water stress conditions markedly indicated the importance of TaWRKY32 under water stress conditions. These results suggested that TaWRK32 has multifunctional and might be an instrumental tool in breeding for transgenic plants for improved water stress tolerance in wheat.\",\"PeriodicalId\":8506,\"journal\":{\"name\":\"Asian Journal of Agriculture and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Agriculture and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35495/ajab.2020.06.371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35495/ajab.2020.06.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
A wheat stress induced WRKY transcription factor TaWRKY32 confers drought stress tolerance in Oryza sativa
WRKY transcription factors group play a significant role in stress signalling pathway. In this study, a WRKY member of bread wheat, TaWRKY , was cloned and its function in response to water stress conditions was studied. Expression analysis revealed that TaWRKY32 mainly expressed when plants were subjected to PEG, NaCl, and cold and probably participate in ABA dependent signalling pathways. This study was done to elucidate the role in transgenic breeding, TaWRK32 was transferred to rice plants under CaMV-35S promoter. Overexpression of TaWRK32 lead to enhanced fresh shoot and root weight at seedling stage when compared to wild type (WT). Moreover, transgenic rice lines under water stress, showed greater recovery rate when compared to WT. Higher values of cell membrane stability and lower Chl a/b ratio of transgenic rice lines under water stress conditions markedly indicated the importance of TaWRKY32 under water stress conditions. These results suggested that TaWRK32 has multifunctional and might be an instrumental tool in breeding for transgenic plants for improved water stress tolerance in wheat.
期刊介绍:
Asian Journal of Agriculture and Biology (AJAB) is a peer reviewed, open access, quarterly journal serving as a means for scientific information exchange in international and national fora. The scope encompasses all disciplines of agriculture and biology including animal, plant and environmental sciences. All manuscripts are evaluated for their scientific content and significance by the Editor-in-Chief &/or Managing Editor and at least two independent reviewers. All submitted manuscripts should contain unpublished original research which should not be under consideration for publication elsewhere. In order to avoid unnecessary delay in publication, authors are requested to comply the following guidelines; differing these, your submission will be returned for additional revision.