线性空间上凸函数的加权均值和积分均值的若干不等式

IF 0.7 Q2 MATHEMATICS
S. Dragomir
{"title":"线性空间上凸函数的加权均值和积分均值的若干不等式","authors":"S. Dragomir","doi":"10.29228/proc.29","DOIUrl":null,"url":null,"abstract":"Let f be a convex function on a convex subset C of a linear space and x; y 2 C; with x 6= y: If p : [0; 1] ! R is a Lebesgue integrable and symmetric function, namely p (1 t) = p (t) for all t 2 [0; 1] and such that the condition 0 Z 0 p (s) ds Z 1 0 p (s) ds for all 2 [0; 1] holds, then we have 1 R 1 0 p ( ) d Z 1 0 p ( ) f ((1 )x+ y) d Z 1 0 f ((1 )x+ y) d 1 R 1 0 p ( ) d Z 1 0 Z 0 p (s) ds (1 ) d [r fy (y x) r+fx (y x)] 1 2 [r fy (y x) r+fx (y x)] : Some applications for norms and semi-inner products are also provided. 1. Introduction LetX be a real linear space, x; y 2 X, x 6= y and let [x; y] := f(1 )x+ y; 2 [0; 1]g be the segment generated by x and y. We consider the function f : [x; y]! R and the attached function '(x;y) : [0; 1]! R, '(x;y) (t) := f [(1 t)x+ ty], t 2 [0; 1]. It is well known that f is convex on [x; y] i¤ ' (x; y) is convex on [0; 1], and the following lateral derivatives exist and satisfy (i) '0 (x;y) (s) = r f(1 s)x+sy (y x), s 2 [0; 1); (ii) '+(x;y) (0) = r+fx (y x) ; (iii) '0 (x;y) (1) = r fy (y x) ; where r fx (y) are the Gâteaux lateral derivatives, we recall that r+fx (y) : = lim h!0+ f (x+ hy) f (x) h ; r fx (y) : = lim k!0 f (x+ ky) f (x) k ; x; y 2 X: The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions de\u0085ned on a segment [x; y] X : (HH) f x+ y 2 Z 1 0 f [(1 t)x+ ty] dt f (x) + f (y) 2 ; 1991 Mathematics Subject Classi\u0085cation. 26D15; 46B05. Key words and phrases. Convex functions, LInear spaces, Integral inequalities, HermiteHadamard inequality, Féjer’s inequalities, Norms and semi-inner products. 1 2 S. S. DRAGOMIR which easily follows by the classical Hermite-Hadamard inequality for the convex function ' (x; y) : [0; 1]! R '(x;y) 1 2 Z 1 0 '(x;y) (t) dt '(x;y) (0) + '(x;y) (1) 2 : For other related results see the monograph on line [8]. For some recent results in linear spaces see [1], [2] and [9]-[12]. In the recent paper we established the following re\u0085nements and reverses of Féjer’s inequality for functions de\u0085ned on linear spaces: Theorem 1. Let f be an convex function on C and x; y 2 C with x 6= y: If p : [0; 1] ! [0;1) is Lebesgue integrable and symmetric, namely p (1 t) = p (t) for all t 2 [0; 1] ; then 0 1 2 h r+f x+y 2 (y x) r f x+y 2 (y x) i Z 1 0 t 12 p (t) dt (1.1) Z 1 0 f ((1 t)x+ ty) p (t) dt f x+ y 2 Z 1 0 p (t) dt 1 2 [r fy (y x) r+fx (y x)] Z 1 0 t 1 2 p (t) dt and 0 1 2 h r+f x+y 2 (y x) r f x+y 2 (y x) i Z 1 0 1 2 t 1 2 p (t) dt (1.2) f (x) + f (y) 2 Z 1 0 p (t) dt Z 1 0 f ((1 t)x+ ty) p (t) dt 1 2 [r fy (y x) r+fx (y x)] Z 1 0 1 2 t 12 p (t) dt: If we take p 1 in (1.1), then we get 0 1 8 h r+f x+y 2 (y x) r f x+y 2 (y x) i (1.3) Z 1 0 f [(1 t)x+ ty] dt f x+ y 2 1 8 [r fy (y x) r+fx (y x)] that was \u0085rstly obtained in [4], while from (1.2) we recapture the result obtained in [5] 0 1 8 h r+f x+y 2 (y x) r f x+y 2 (y x) i (1.4) f (x) + f (y) 2 Z 1 0 f [(1 t)x+ ty] dt 1 8 [r fy (y x) r+fx (y x)] : Motivated by the above results, we establish in this paper some upper and lower bounds for the di¤erence Z 1 0 p ( ) f ((1 )x+ y) d Z 1","PeriodicalId":54068,"journal":{"name":"Proceedings of the Institute of Mathematics and Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some inequalities for weighted and integral means of convex functions on linear spaces\",\"authors\":\"S. Dragomir\",\"doi\":\"10.29228/proc.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f be a convex function on a convex subset C of a linear space and x; y 2 C; with x 6= y: If p : [0; 1] ! R is a Lebesgue integrable and symmetric function, namely p (1 t) = p (t) for all t 2 [0; 1] and such that the condition 0 Z 0 p (s) ds Z 1 0 p (s) ds for all 2 [0; 1] holds, then we have 1 R 1 0 p ( ) d Z 1 0 p ( ) f ((1 )x+ y) d Z 1 0 f ((1 )x+ y) d 1 R 1 0 p ( ) d Z 1 0 Z 0 p (s) ds (1 ) d [r fy (y x) r+fx (y x)] 1 2 [r fy (y x) r+fx (y x)] : Some applications for norms and semi-inner products are also provided. 1. Introduction LetX be a real linear space, x; y 2 X, x 6= y and let [x; y] := f(1 )x+ y; 2 [0; 1]g be the segment generated by x and y. We consider the function f : [x; y]! R and the attached function '(x;y) : [0; 1]! R, '(x;y) (t) := f [(1 t)x+ ty], t 2 [0; 1]. It is well known that f is convex on [x; y] i¤ ' (x; y) is convex on [0; 1], and the following lateral derivatives exist and satisfy (i) '0 (x;y) (s) = r f(1 s)x+sy (y x), s 2 [0; 1); (ii) '+(x;y) (0) = r+fx (y x) ; (iii) '0 (x;y) (1) = r fy (y x) ; where r fx (y) are the Gâteaux lateral derivatives, we recall that r+fx (y) : = lim h!0+ f (x+ hy) f (x) h ; r fx (y) : = lim k!0 f (x+ ky) f (x) k ; x; y 2 X: The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions de\\u0085ned on a segment [x; y] X : (HH) f x+ y 2 Z 1 0 f [(1 t)x+ ty] dt f (x) + f (y) 2 ; 1991 Mathematics Subject Classi\\u0085cation. 26D15; 46B05. Key words and phrases. Convex functions, LInear spaces, Integral inequalities, HermiteHadamard inequality, Féjer’s inequalities, Norms and semi-inner products. 1 2 S. S. DRAGOMIR which easily follows by the classical Hermite-Hadamard inequality for the convex function ' (x; y) : [0; 1]! R '(x;y) 1 2 Z 1 0 '(x;y) (t) dt '(x;y) (0) + '(x;y) (1) 2 : For other related results see the monograph on line [8]. For some recent results in linear spaces see [1], [2] and [9]-[12]. In the recent paper we established the following re\\u0085nements and reverses of Féjer’s inequality for functions de\\u0085ned on linear spaces: Theorem 1. Let f be an convex function on C and x; y 2 C with x 6= y: If p : [0; 1] ! [0;1) is Lebesgue integrable and symmetric, namely p (1 t) = p (t) for all t 2 [0; 1] ; then 0 1 2 h r+f x+y 2 (y x) r f x+y 2 (y x) i Z 1 0 t 12 p (t) dt (1.1) Z 1 0 f ((1 t)x+ ty) p (t) dt f x+ y 2 Z 1 0 p (t) dt 1 2 [r fy (y x) r+fx (y x)] Z 1 0 t 1 2 p (t) dt and 0 1 2 h r+f x+y 2 (y x) r f x+y 2 (y x) i Z 1 0 1 2 t 1 2 p (t) dt (1.2) f (x) + f (y) 2 Z 1 0 p (t) dt Z 1 0 f ((1 t)x+ ty) p (t) dt 1 2 [r fy (y x) r+fx (y x)] Z 1 0 1 2 t 12 p (t) dt: If we take p 1 in (1.1), then we get 0 1 8 h r+f x+y 2 (y x) r f x+y 2 (y x) i (1.3) Z 1 0 f [(1 t)x+ ty] dt f x+ y 2 1 8 [r fy (y x) r+fx (y x)] that was \\u0085rstly obtained in [4], while from (1.2) we recapture the result obtained in [5] 0 1 8 h r+f x+y 2 (y x) r f x+y 2 (y x) i (1.4) f (x) + f (y) 2 Z 1 0 f [(1 t)x+ ty] dt 1 8 [r fy (y x) r+fx (y x)] : Motivated by the above results, we establish in this paper some upper and lower bounds for the di¤erence Z 1 0 p ( ) f ((1 )x+ y) d Z 1\",\"PeriodicalId\":54068,\"journal\":{\"name\":\"Proceedings of the Institute of Mathematics and Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institute of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29228/proc.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institute of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29228/proc.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设f是线性空间和x的凸子集C上的凸函数;y 2 C;如果p = [0];1) !R是Lebesgue可积对称函数,即p (1 t) = p (t)对于所有t 2 [0;1]并且使得条件0 z0 p (s)为z10 p (s)为所有2[0]成立;1]成立,则有1r10p () d z10p () f ((1)x+ y) d z10p ((1)x+ y) d 1r10p () d z10z0p () d z10z0p (s) ds (1) d [R fy (y x) R +fx (y x)] 1 2 [R fy (y x) R +fx (y x)]:并给出了范数和半内积的一些应用。1. 设x为实线性空间;y 2 X, X 6= y,让[X;:= f(1)x+ Y;2 (0;1]g是由x和y生成的线段,我们考虑函数f: [x;y) !R和附加函数'(x;y): [0;1) !R, '(x;y) (t):= f [(1 t)x+ y], t 2 [0;1]。众所周知f在[x]上是凸的;i¤' (x;Y)在[0;1],且存在下列侧向导数,且满足(i)'0 (x;y) (s) = r f(1 s)x+sy (y x), s 2 [0;1);(2)'+(x;y) (0) = r+fx (y x);(3)'0 (x;y) (1) = r fy (y x);其中r fx (y)是 teaux侧向导数,我们记得r+fx (y): = lim h!0+ f (x+ hy) f (x) h;rfx (y): = lim k!0 f (x+ ky) f (x) k;x;y 2x:下面的不等式是著名的Hermite-Hadamard积分不等式对于在线段[X;y] X: (HH) f X + y 2 z10 f [(1t) X + y] dt f (X) + f (y) 2;1991年数学课程班…教育。26 d15;46 b05。关键词和短语。凸函数,线性空间,积分不等式,HermiteHadamard不等式,fsamjer不等式,范数和半内积。1 2 S. S. DRAGOMIR很容易得到经典的Hermite-Hadamard不等式对于凸函数' (x;Y): [0;1) !R '(x;y) 1 2 z10 '(x;y) (t) dt '(x;y) (0) + '(x;y)(1) 2:其他相关结果见[8]线上的专著。最近在线性空间中的一些结果见[1],[2]和[9]-[12]。在最近的一篇论文中,我们建立了线性空间上需要的函数de…的fsamjer不等式的下列定理…和反转:定理1。设f是C和x上的凸函数;如果p: [0;;]1) ![0;1]是Lebesgue可积对称的,即p (1 t) = p (t)对于所有t 2 [0;1);然后0 1 2 h f r + x + y 2 x (y) r f x + y 2 x (y) Z 1 0 t 12 p (t) dt (1.1) Z 1 0 f (x (1 t) +泰)p (t) dt f x + y 2 Z 1 0 p (t) dt 1 2 [x (y)财政年度r +外汇(x, y)] Z 1 0 t 1 2 p (t) dt和0 1 2 h f r + x + y 2 x (y) r f x + y 2 x (y)我Z 1 0 1 2 t 1 2 p (t) dt (1.2) f (x) Z + f (y) 2 1 0 p (t) dt Z 1 0 f (x (1 t) +泰)p (t) dt 1 2 [x (y)财政年度r +外汇(x, y)] Z 1 0 1 2 t 12 p (t) dt:如果我们把p 1(1.1),然后我们得到0 1 8 h f r + x + y 2 x (y) r f x + y 2 x (y)我(1.3)Z 1 0 f [(1 t) x +泰]dt f x + y 2 1 8 [x (y)财政年度r +外汇(x, y)]这是…rst获得[4],而从(1.2)我们夺回[5]的结果0 1 8 h f r + x + y 2 x (y) r f x + y 2 x (y)我(1.4)f (x) Z + f (y) 2 1 0 f [(1 t) x +泰]dt 1 8 [x (y)财政年度r +外汇(x, y)]:出于上面的结果,我们本文建立一些上界和下界的di¤erence Z 1 0 p () f ((1) x + y) d Z 1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some inequalities for weighted and integral means of convex functions on linear spaces
Let f be a convex function on a convex subset C of a linear space and x; y 2 C; with x 6= y: If p : [0; 1] ! R is a Lebesgue integrable and symmetric function, namely p (1 t) = p (t) for all t 2 [0; 1] and such that the condition 0 Z 0 p (s) ds Z 1 0 p (s) ds for all 2 [0; 1] holds, then we have 1 R 1 0 p ( ) d Z 1 0 p ( ) f ((1 )x+ y) d Z 1 0 f ((1 )x+ y) d 1 R 1 0 p ( ) d Z 1 0 Z 0 p (s) ds (1 ) d [r fy (y x) r+fx (y x)] 1 2 [r fy (y x) r+fx (y x)] : Some applications for norms and semi-inner products are also provided. 1. Introduction LetX be a real linear space, x; y 2 X, x 6= y and let [x; y] := f(1 )x+ y; 2 [0; 1]g be the segment generated by x and y. We consider the function f : [x; y]! R and the attached function '(x;y) : [0; 1]! R, '(x;y) (t) := f [(1 t)x+ ty], t 2 [0; 1]. It is well known that f is convex on [x; y] i¤ ' (x; y) is convex on [0; 1], and the following lateral derivatives exist and satisfy (i) '0 (x;y) (s) = r f(1 s)x+sy (y x), s 2 [0; 1); (ii) '+(x;y) (0) = r+fx (y x) ; (iii) '0 (x;y) (1) = r fy (y x) ; where r fx (y) are the Gâteaux lateral derivatives, we recall that r+fx (y) : = lim h!0+ f (x+ hy) f (x) h ; r fx (y) : = lim k!0 f (x+ ky) f (x) k ; x; y 2 X: The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions de…ned on a segment [x; y] X : (HH) f x+ y 2 Z 1 0 f [(1 t)x+ ty] dt f (x) + f (y) 2 ; 1991 Mathematics Subject Classi…cation. 26D15; 46B05. Key words and phrases. Convex functions, LInear spaces, Integral inequalities, HermiteHadamard inequality, Féjer’s inequalities, Norms and semi-inner products. 1 2 S. S. DRAGOMIR which easily follows by the classical Hermite-Hadamard inequality for the convex function ' (x; y) : [0; 1]! R '(x;y) 1 2 Z 1 0 '(x;y) (t) dt '(x;y) (0) + '(x;y) (1) 2 : For other related results see the monograph on line [8]. For some recent results in linear spaces see [1], [2] and [9]-[12]. In the recent paper we established the following re…nements and reverses of Féjer’s inequality for functions de…ned on linear spaces: Theorem 1. Let f be an convex function on C and x; y 2 C with x 6= y: If p : [0; 1] ! [0;1) is Lebesgue integrable and symmetric, namely p (1 t) = p (t) for all t 2 [0; 1] ; then 0 1 2 h r+f x+y 2 (y x) r f x+y 2 (y x) i Z 1 0 t 12 p (t) dt (1.1) Z 1 0 f ((1 t)x+ ty) p (t) dt f x+ y 2 Z 1 0 p (t) dt 1 2 [r fy (y x) r+fx (y x)] Z 1 0 t 1 2 p (t) dt and 0 1 2 h r+f x+y 2 (y x) r f x+y 2 (y x) i Z 1 0 1 2 t 1 2 p (t) dt (1.2) f (x) + f (y) 2 Z 1 0 p (t) dt Z 1 0 f ((1 t)x+ ty) p (t) dt 1 2 [r fy (y x) r+fx (y x)] Z 1 0 1 2 t 12 p (t) dt: If we take p 1 in (1.1), then we get 0 1 8 h r+f x+y 2 (y x) r f x+y 2 (y x) i (1.3) Z 1 0 f [(1 t)x+ ty] dt f x+ y 2 1 8 [r fy (y x) r+fx (y x)] that was …rstly obtained in [4], while from (1.2) we recapture the result obtained in [5] 0 1 8 h r+f x+y 2 (y x) r f x+y 2 (y x) i (1.4) f (x) + f (y) 2 Z 1 0 f [(1 t)x+ ty] dt 1 8 [r fy (y x) r+fx (y x)] : Motivated by the above results, we establish in this paper some upper and lower bounds for the di¤erence Z 1 0 p ( ) f ((1 )x+ y) d Z 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
27.30%
发文量
14
期刊介绍: Proceedings of the Institute of Mathematics and Mechanics (PIMM), National Academy of Sciences of Azerbaijan is an open access journal that publishes original, high quality research papers in all fields of mathematics. A special attention is paid to the following fields: real and complex analysis, harmonic analysis, functional analysis, approximation theory, differential equations, calculus of variations and optimal control, differential geometry, algebra, number theory, probability theory and mathematical statistics, mathematical physics. PIMM welcomes papers that establish interesting and important new results or solve significant problems. All papers are refereed for correctness and suitability for publication. The journal is published in both print and online versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信