Orlicz空间中弱紧集的例子

IF 0.7 Q2 MATHEMATICS
D. Dauitbek, Y. Nessipbayev, K. Tulenov
{"title":"Orlicz空间中弱紧集的例子","authors":"D. Dauitbek, Y. Nessipbayev, K. Tulenov","doi":"10.31489/2022m2/72-82","DOIUrl":null,"url":null,"abstract":"This paper provides a number of examples of relatively weakly compact sets in Orlicz spaces. We show some results arising from these examples. Particularly, we provide a criterion which ensures that some Orlicz function is increasing more rapidly than another (in a sense of T. Ando). In addition, we point out that if a bounded subset K of the Orlicz space LΦ is not bounded by the modular Φ, then it is possible for a set K to remain unbounded under any modular Ψ increasing more rapidly than Φ.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of weakly compact sets in Orlicz spaces\",\"authors\":\"D. Dauitbek, Y. Nessipbayev, K. Tulenov\",\"doi\":\"10.31489/2022m2/72-82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a number of examples of relatively weakly compact sets in Orlicz spaces. We show some results arising from these examples. Particularly, we provide a criterion which ensures that some Orlicz function is increasing more rapidly than another (in a sense of T. Ando). In addition, we point out that if a bounded subset K of the Orlicz space LΦ is not bounded by the modular Φ, then it is possible for a set K to remain unbounded under any modular Ψ increasing more rapidly than Φ.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m2/72-82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/72-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Orlicz空间中相对弱紧集的一些例子。我们展示了从这些例子中得到的一些结果。特别是,我们提供了一个准则,以确保某些Orlicz函数比另一个函数增长得更快(在T. Ando的意义上)。此外,我们指出,如果Orlicz空间LΦ的有界子集K不被模Φ有界,那么在任何比Φ增长更快的模Ψ下,集合K都有可能保持无界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examples of weakly compact sets in Orlicz spaces
This paper provides a number of examples of relatively weakly compact sets in Orlicz spaces. We show some results arising from these examples. Particularly, we provide a criterion which ensures that some Orlicz function is increasing more rapidly than another (in a sense of T. Ando). In addition, we point out that if a bounded subset K of the Orlicz space LΦ is not bounded by the modular Φ, then it is possible for a set K to remain unbounded under any modular Ψ increasing more rapidly than Φ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信