基于距离测量的特征选择

Mingming Yang, Junchuan Yang
{"title":"基于距离测量的特征选择","authors":"Mingming Yang, Junchuan Yang","doi":"10.32604/JNM.2021.018267","DOIUrl":null,"url":null,"abstract":": Every day we receive a large amount of information through different social media and software, and this data and information can be realized with the advent of data mining methods. In the process of data mining, to solve some high-dimensional problems, feature selection is carried out in limited training samples, and effective features are selected. This paper focuses on two Relief feature selection algorithms: Relief and ReliefF algorithm. The differences between them and their respective applicable scopes are analyzed. Based on Relief algorithm, the high weight feature subset is obtained, and the correlation between features is calculated according to the mutual information distance measure, and the high redundant features are removed to obtain the feature subset with higher quality. Experimental results on six datasets show the effectiveness of our method.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Selection Based on Distance Measurement\",\"authors\":\"Mingming Yang, Junchuan Yang\",\"doi\":\"10.32604/JNM.2021.018267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Every day we receive a large amount of information through different social media and software, and this data and information can be realized with the advent of data mining methods. In the process of data mining, to solve some high-dimensional problems, feature selection is carried out in limited training samples, and effective features are selected. This paper focuses on two Relief feature selection algorithms: Relief and ReliefF algorithm. The differences between them and their respective applicable scopes are analyzed. Based on Relief algorithm, the high weight feature subset is obtained, and the correlation between features is calculated according to the mutual information distance measure, and the high redundant features are removed to obtain the feature subset with higher quality. Experimental results on six datasets show the effectiveness of our method.\",\"PeriodicalId\":69198,\"journal\":{\"name\":\"新媒体杂志(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新媒体杂志(英文)\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.32604/JNM.2021.018267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/JNM.2021.018267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

:我们每天通过不同的社交媒体和软件接收到大量的信息,这些数据和信息可以通过数据挖掘方法的出现来实现。在数据挖掘过程中,为了解决一些高维问题,在有限的训练样本中进行特征选择,选择有效的特征。本文重点研究了两种地形特征选择算法:Relief和ReliefF算法。分析了它们之间的区别以及各自的适用范围。基于Relief算法获得高权重特征子集,根据互信息距离度量计算特征之间的相关性,去除高冗余特征,得到质量更高的特征子集。在6个数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection Based on Distance Measurement
: Every day we receive a large amount of information through different social media and software, and this data and information can be realized with the advent of data mining methods. In the process of data mining, to solve some high-dimensional problems, feature selection is carried out in limited training samples, and effective features are selected. This paper focuses on two Relief feature selection algorithms: Relief and ReliefF algorithm. The differences between them and their respective applicable scopes are analyzed. Based on Relief algorithm, the high weight feature subset is obtained, and the correlation between features is calculated according to the mutual information distance measure, and the high redundant features are removed to obtain the feature subset with higher quality. Experimental results on six datasets show the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信