图像超分辨率网络级联结构设计

Jianwei Zhang, Zhenxing Wang, Yuhui Zheng, Guoqing Zhang
{"title":"图像超分辨率网络级联结构设计","authors":"Jianwei Zhang, Zhenxing Wang, Yuhui Zheng, Guoqing Zhang","doi":"10.32604/JNM.2021.018383","DOIUrl":null,"url":null,"abstract":": Image super resolution is an important field of computer research. The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image, and then use it for image restoration. However, most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images. In order to utilize the information of images at different scales, we design a cascade network structure and cascaded super-resolution convolutional neural networks. This network contains three cascaded FSRCNNs. Due to each sub FSRCNN can process a specific scale image, our network can simultaneously exploit three scale images, and can also use the information of three different scales of images. Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Network Cascade Structure for Image Super-Resolution\",\"authors\":\"Jianwei Zhang, Zhenxing Wang, Yuhui Zheng, Guoqing Zhang\",\"doi\":\"10.32604/JNM.2021.018383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Image super resolution is an important field of computer research. The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image, and then use it for image restoration. However, most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images. In order to utilize the information of images at different scales, we design a cascade network structure and cascaded super-resolution convolutional neural networks. This network contains three cascaded FSRCNNs. Due to each sub FSRCNN can process a specific scale image, our network can simultaneously exploit three scale images, and can also use the information of three different scales of images. Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.\",\"PeriodicalId\":69198,\"journal\":{\"name\":\"新媒体杂志(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新媒体杂志(英文)\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.32604/JNM.2021.018383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/JNM.2021.018383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像超分辨率是计算机研究的一个重要领域。目前主流的图像超分辨率技术是利用深度学习挖掘图像的深层特征,然后将其用于图像恢复。然而,上面提到的这些模型大多只训练特定尺度的图像,而没有考虑图像不同尺度之间的关系。为了利用不同尺度的图像信息,我们设计了级联网络结构和级联超分辨率卷积神经网络。该网络包含3个级联的fsrcnn。由于每个子FSRCNN可以处理一个特定的尺度图像,因此我们的网络可以同时开发三幅尺度图像,也可以使用三种不同尺度图像的信息。在多个数据集上的实验证明,该网络可以获得较好的图像SR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Network Cascade Structure for Image Super-Resolution
: Image super resolution is an important field of computer research. The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image, and then use it for image restoration. However, most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images. In order to utilize the information of images at different scales, we design a cascade network structure and cascaded super-resolution convolutional neural networks. This network contains three cascaded FSRCNNs. Due to each sub FSRCNN can process a specific scale image, our network can simultaneously exploit three scale images, and can also use the information of three different scales of images. Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信