基于编码器-解码器的鲁棒耕地提取

A. Wulamu, Jingyue Sang, D. Zhang, Zuxian Shi
{"title":"基于编码器-解码器的鲁棒耕地提取","authors":"A. Wulamu, Jingyue Sang, D. Zhang, Zuxian Shi","doi":"10.32604/jnm.2020.014115","DOIUrl":null,"url":null,"abstract":": Cultivated land extraction is essential for sustainable development and agriculture. In this paper, the network we propose is based on the encoder-decoder structure, which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions. The encoder consists of two part: the first is the modified Xception, it can used as the feature extraction network, and the second is the atrous convolution, it can used to expand the receptive field and the context information to extract richer feature information. The decoder part uses the conventional upsampling operation to restore the original resolution. In addition, we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union (IoU). Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Cultivated Land Extraction Using Encoder-Decoder\",\"authors\":\"A. Wulamu, Jingyue Sang, D. Zhang, Zuxian Shi\",\"doi\":\"10.32604/jnm.2020.014115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cultivated land extraction is essential for sustainable development and agriculture. In this paper, the network we propose is based on the encoder-decoder structure, which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions. The encoder consists of two part: the first is the modified Xception, it can used as the feature extraction network, and the second is the atrous convolution, it can used to expand the receptive field and the context information to extract richer feature information. The decoder part uses the conventional upsampling operation to restore the original resolution. In addition, we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union (IoU). Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.\",\"PeriodicalId\":69198,\"journal\":{\"name\":\"新媒体杂志(英文)\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新媒体杂志(英文)\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.32604/jnm.2020.014115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/jnm.2020.014115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:开垦耕地对可持续发展和农业至关重要。本文提出的网络基于编码器-解码器结构,从卫星图像中提取耕地语义分割神经网络,并将其用于农业自动化解决方案。该编码器由两部分组成:第一部分是改进的异常,它可以作为特征提取网络;第二部分是亚历克斯卷积,它可以用来扩展接受域和上下文信息,以提取更丰富的特征信息。解码器部分使用传统的上采样操作来恢复原始分辨率。此外,我们使用BCE和love -hinge的组合作为损失函数来优化Intersection over Union (IoU)。实验结果表明,所提出的网络结构能够很好地解决银川市耕地抽取问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Cultivated Land Extraction Using Encoder-Decoder
: Cultivated land extraction is essential for sustainable development and agriculture. In this paper, the network we propose is based on the encoder-decoder structure, which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions. The encoder consists of two part: the first is the modified Xception, it can used as the feature extraction network, and the second is the atrous convolution, it can used to expand the receptive field and the context information to extract richer feature information. The decoder part uses the conventional upsampling operation to restore the original resolution. In addition, we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union (IoU). Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信