{"title":"钙钛矿太阳能电池的制备与性能:乙酰丙酮对TiO2致密层的影响","authors":"B. Kaya, İ. Boz, Mehtap ŞAFAK BOROĞLU","doi":"10.35378/gujs.1176183","DOIUrl":null,"url":null,"abstract":"Solar energy has been the most emphasized issue in recent years, as it is sustainable and causes zero emissions. Solar cells are of interest because they convert sunlight into electricity through photovoltaic effects. Over the last ten years, the efficiency of perovskite solar cells has achieved 25% due to the development of synthesis techniques and electrode materials etc. The electron transport layer, a hole transport layer their thickness and structure of surface etc. act an important role in improving the performance of perovskite solar cells. We have investigated the effect of the acid-assisted route and the acetylacetone-assisted (AA) route on TiO2 films and thus the effect of the efficiency of perovskite solar cells. Perovskite (CH3NH3PbI3) solar cells based on different c-TiO2 have been fabricated by the spin coating route, and the overall experimental section is made in the nitrogen medium at room temperature. Cracked c-TiO2 film obtained via the acid-assisted route. The planar heterojunction structure of ITO/AA-TiO2/CH3NH3PbI3/P3HT/Ag resulted 0.03% of power conversion efficiency (PCE). However, the perovskite solar cells with a mesoporous heterojunction structure of ITO/ AA-TiO2/m- TiO2 /CH3NH3PbI3/P3HT/Ag resulted 0.1% of PCE.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Performance of a Perovskite Solar Cell: Effect of Acetylacetone on Compact TiO2 Layer\",\"authors\":\"B. Kaya, İ. Boz, Mehtap ŞAFAK BOROĞLU\",\"doi\":\"10.35378/gujs.1176183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy has been the most emphasized issue in recent years, as it is sustainable and causes zero emissions. Solar cells are of interest because they convert sunlight into electricity through photovoltaic effects. Over the last ten years, the efficiency of perovskite solar cells has achieved 25% due to the development of synthesis techniques and electrode materials etc. The electron transport layer, a hole transport layer their thickness and structure of surface etc. act an important role in improving the performance of perovskite solar cells. We have investigated the effect of the acid-assisted route and the acetylacetone-assisted (AA) route on TiO2 films and thus the effect of the efficiency of perovskite solar cells. Perovskite (CH3NH3PbI3) solar cells based on different c-TiO2 have been fabricated by the spin coating route, and the overall experimental section is made in the nitrogen medium at room temperature. Cracked c-TiO2 film obtained via the acid-assisted route. The planar heterojunction structure of ITO/AA-TiO2/CH3NH3PbI3/P3HT/Ag resulted 0.03% of power conversion efficiency (PCE). However, the perovskite solar cells with a mesoporous heterojunction structure of ITO/ AA-TiO2/m- TiO2 /CH3NH3PbI3/P3HT/Ag resulted 0.1% of PCE.\",\"PeriodicalId\":12615,\"journal\":{\"name\":\"gazi university journal of science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"gazi university journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35378/gujs.1176183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.1176183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fabrication and Performance of a Perovskite Solar Cell: Effect of Acetylacetone on Compact TiO2 Layer
Solar energy has been the most emphasized issue in recent years, as it is sustainable and causes zero emissions. Solar cells are of interest because they convert sunlight into electricity through photovoltaic effects. Over the last ten years, the efficiency of perovskite solar cells has achieved 25% due to the development of synthesis techniques and electrode materials etc. The electron transport layer, a hole transport layer their thickness and structure of surface etc. act an important role in improving the performance of perovskite solar cells. We have investigated the effect of the acid-assisted route and the acetylacetone-assisted (AA) route on TiO2 films and thus the effect of the efficiency of perovskite solar cells. Perovskite (CH3NH3PbI3) solar cells based on different c-TiO2 have been fabricated by the spin coating route, and the overall experimental section is made in the nitrogen medium at room temperature. Cracked c-TiO2 film obtained via the acid-assisted route. The planar heterojunction structure of ITO/AA-TiO2/CH3NH3PbI3/P3HT/Ag resulted 0.03% of power conversion efficiency (PCE). However, the perovskite solar cells with a mesoporous heterojunction structure of ITO/ AA-TiO2/m- TiO2 /CH3NH3PbI3/P3HT/Ag resulted 0.1% of PCE.
期刊介绍:
The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.