基于改进WGAN-gp的低剂量CT图像去噪

Zhenlong Du, Ye Chao, Yujia Yan, Xiaoli Li
{"title":"基于改进WGAN-gp的低剂量CT图像去噪","authors":"Zhenlong Du, Ye Chao, Yujia Yan, Xiaoli Li","doi":"10.32604/JNM.2019.06259","DOIUrl":null,"url":null,"abstract":"In order to improve the quality of low-dose computational tomography (CT) images, the paper proposes an improved image denoising approach based on WGAN-gp with Wasserstein distance. For improving the training and the convergence efficiency, the given method introduces the gradient penalty term to WGAN network. The novel perceptual loss is introduced to make the texture information of the low-dose images sensitive to the diagnostician eye. The experimental results show that compared with the state-of-art methods, the time complexity is reduced, and the visual quality of low-dose CT images is significantly improved.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Dose CT Image Denoising Based on Improved WGAN-gp\",\"authors\":\"Zhenlong Du, Ye Chao, Yujia Yan, Xiaoli Li\",\"doi\":\"10.32604/JNM.2019.06259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the quality of low-dose computational tomography (CT) images, the paper proposes an improved image denoising approach based on WGAN-gp with Wasserstein distance. For improving the training and the convergence efficiency, the given method introduces the gradient penalty term to WGAN network. The novel perceptual loss is introduced to make the texture information of the low-dose images sensitive to the diagnostician eye. The experimental results show that compared with the state-of-art methods, the time complexity is reduced, and the visual quality of low-dose CT images is significantly improved.\",\"PeriodicalId\":69198,\"journal\":{\"name\":\"新媒体杂志(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新媒体杂志(英文)\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.32604/JNM.2019.06259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/JNM.2019.06259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了提高低剂量CT图像的质量,提出了一种基于WGAN-gp的Wasserstein距离改进图像去噪方法。为了提高训练和收敛效率,该方法在WGAN网络中引入了梯度惩罚项。引入了一种新的感知损失方法,使低剂量图像的纹理信息对诊断人眼敏感。实验结果表明,与现有方法相比,该方法降低了时间复杂度,显著提高了低剂量CT图像的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Dose CT Image Denoising Based on Improved WGAN-gp
In order to improve the quality of low-dose computational tomography (CT) images, the paper proposes an improved image denoising approach based on WGAN-gp with Wasserstein distance. For improving the training and the convergence efficiency, the given method introduces the gradient penalty term to WGAN network. The novel perceptual loss is introduced to make the texture information of the low-dose images sensitive to the diagnostician eye. The experimental results show that compared with the state-of-art methods, the time complexity is reduced, and the visual quality of low-dose CT images is significantly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信