基于Dense_SIFT特征的地面云识别

Zhizheng Zhang, Jing Feng, Jun Yan, Xiaolei Wang, Xiaocun Shu
{"title":"基于Dense_SIFT特征的地面云识别","authors":"Zhizheng Zhang, Jing Feng, Jun Yan, Xiaolei Wang, Xiaocun Shu","doi":"10.32604/JNM.2019.05937","DOIUrl":null,"url":null,"abstract":"Clouds play an important role in modulating radiation processes and climate changes in the Earth's atmosphere. Currently, measurement of meteorological elements such as temperature, air pressure, humidity, and wind has been automated. However, the cloud's automatic identification technology is still not perfect. Thus, this paper presents an approach that extracts dense scale-invariant feature transform (Dense_SIFT) as the local features of four typical cloud images. The extracted cloud features are then clustered by K-means algorithm, and the bag-of-words (BoW) model is used to describe each ground-based cloud image. Finally, support vector machine (SVM) is used for classification and recognition. Based on this design, a nephogram recognition intelligent application is implemented. Experiments show that, compared with other classifiers, our approach has better performance and achieved a recognition rate of 88.1%.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ground-Based Cloud Recognition Based on Dense_SIFT Features\",\"authors\":\"Zhizheng Zhang, Jing Feng, Jun Yan, Xiaolei Wang, Xiaocun Shu\",\"doi\":\"10.32604/JNM.2019.05937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clouds play an important role in modulating radiation processes and climate changes in the Earth's atmosphere. Currently, measurement of meteorological elements such as temperature, air pressure, humidity, and wind has been automated. However, the cloud's automatic identification technology is still not perfect. Thus, this paper presents an approach that extracts dense scale-invariant feature transform (Dense_SIFT) as the local features of four typical cloud images. The extracted cloud features are then clustered by K-means algorithm, and the bag-of-words (BoW) model is used to describe each ground-based cloud image. Finally, support vector machine (SVM) is used for classification and recognition. Based on this design, a nephogram recognition intelligent application is implemented. Experiments show that, compared with other classifiers, our approach has better performance and achieved a recognition rate of 88.1%.\",\"PeriodicalId\":69198,\"journal\":{\"name\":\"新媒体杂志(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新媒体杂志(英文)\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.32604/JNM.2019.05937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/JNM.2019.05937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云在调节地球大气中的辐射过程和气候变化方面起着重要作用。目前,诸如温度、气压、湿度和风等气象要素的测量已实现自动化。然而,云的自动识别技术仍不完善。为此,本文提出了一种提取密集尺度不变特征变换(Dense_SIFT)作为四幅典型云图局部特征的方法。然后利用K-means算法对提取的云特征进行聚类,利用词袋模型对每幅地面云图进行描述。最后,利用支持向量机(SVM)进行分类识别。在此基础上,实现了一个云图识别智能应用。实验表明,与其他分类器相比,我们的方法具有更好的性能,识别率达到了88.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground-Based Cloud Recognition Based on Dense_SIFT Features
Clouds play an important role in modulating radiation processes and climate changes in the Earth's atmosphere. Currently, measurement of meteorological elements such as temperature, air pressure, humidity, and wind has been automated. However, the cloud's automatic identification technology is still not perfect. Thus, this paper presents an approach that extracts dense scale-invariant feature transform (Dense_SIFT) as the local features of four typical cloud images. The extracted cloud features are then clustered by K-means algorithm, and the bag-of-words (BoW) model is used to describe each ground-based cloud image. Finally, support vector machine (SVM) is used for classification and recognition. Based on this design, a nephogram recognition intelligent application is implemented. Experiments show that, compared with other classifiers, our approach has better performance and achieved a recognition rate of 88.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信