ROCK抑制剂Y-27632对大鼠胰岛细胞活力和功能的维持

Yasuhiro Kubota, H. Noguchi, M. Seita, Takeshi Yuasa, H. Sasamoto, S. Nakaji, T. Okitsu, T. Fujiwara, N. Kobayashi
{"title":"ROCK抑制剂Y-27632对大鼠胰岛细胞活力和功能的维持","authors":"Yasuhiro Kubota, H. Noguchi, M. Seita, Takeshi Yuasa, H. Sasamoto, S. Nakaji, T. Okitsu, T. Fujiwara, N. Kobayashi","doi":"10.3727/215517913X674199","DOIUrl":null,"url":null,"abstract":"The number of patients with diabetes is on an increasing trend, thus leading to the belief that diabetes will be the largest medical problem of the 21st century. Islet transplantation can improve glycometabolic control in patients with type 1 diabetes. We studied the viability of Rho-associated protein kinase (ROCK) inhibitor Y-27632 in a culture system in vitro on freshly isolated rat islets. Islet isolation was conducted on a Lewis rat, and studies of culture solutions were split into two groups, one group using ROCK inhibitor Y-27632, and another without. On the seventh day of culture, we evaluated the differences for the cell morphology, viability, and insulin secretion. The Y-27632 group maintained form better than the group without Y-27632. With strong expression of Bcl-2 observed with the Y-27632 group, and expression suppressed with Bax, inhibition of apoptosis by Y-27632 was confirmed. The Y-27632 group predominantly secreted insulin. For islet transplantation, Y-27632 inhibited cell apoptosis in a graft and was also effective in promoting insulin secretion. We were able to confirm effective morphological and functional culture maintenance by separating islets from a rat and adding ROCK inhibitor Y-27632 to the medium.","PeriodicalId":9780,"journal":{"name":"Cell medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/215517913X674199","citationCount":"0","resultStr":"{\"title\":\"Maintenance of Viability and Function of Rat Islets With the Use of ROCK Inhibitor Y-27632.\",\"authors\":\"Yasuhiro Kubota, H. Noguchi, M. Seita, Takeshi Yuasa, H. Sasamoto, S. Nakaji, T. Okitsu, T. Fujiwara, N. Kobayashi\",\"doi\":\"10.3727/215517913X674199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of patients with diabetes is on an increasing trend, thus leading to the belief that diabetes will be the largest medical problem of the 21st century. Islet transplantation can improve glycometabolic control in patients with type 1 diabetes. We studied the viability of Rho-associated protein kinase (ROCK) inhibitor Y-27632 in a culture system in vitro on freshly isolated rat islets. Islet isolation was conducted on a Lewis rat, and studies of culture solutions were split into two groups, one group using ROCK inhibitor Y-27632, and another without. On the seventh day of culture, we evaluated the differences for the cell morphology, viability, and insulin secretion. The Y-27632 group maintained form better than the group without Y-27632. With strong expression of Bcl-2 observed with the Y-27632 group, and expression suppressed with Bax, inhibition of apoptosis by Y-27632 was confirmed. The Y-27632 group predominantly secreted insulin. For islet transplantation, Y-27632 inhibited cell apoptosis in a graft and was also effective in promoting insulin secretion. We were able to confirm effective morphological and functional culture maintenance by separating islets from a rat and adding ROCK inhibitor Y-27632 to the medium.\",\"PeriodicalId\":9780,\"journal\":{\"name\":\"Cell medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3727/215517913X674199\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3727/215517913X674199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/215517913X674199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病患者的数量呈上升趋势,因此人们认为糖尿病将成为21世纪最大的医疗问题。胰岛移植可改善1型糖尿病患者的糖代谢控制。我们研究了rho相关蛋白激酶(ROCK)抑制剂Y-27632在新分离的大鼠胰岛体外培养系统中的生存能力。Lewis大鼠进行胰岛分离,培养液研究分为两组,一组使用ROCK抑制剂Y-27632,另一组不使用ROCK抑制剂Y-27632。在培养的第7天,我们评估了细胞形态、活力和胰岛素分泌的差异。Y-27632组比无Y-27632组保持形态更好。Y-27632组强表达Bcl-2, Bax抑制Bcl-2表达,证实Y-27632对细胞凋亡有抑制作用。Y-27632组主要分泌胰岛素。对于胰岛移植,Y-27632抑制移植细胞凋亡,并有效促进胰岛素分泌。通过分离大鼠胰岛并在培养基中添加ROCK抑制剂Y-27632,我们能够确认有效的形态和功能培养维持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maintenance of Viability and Function of Rat Islets With the Use of ROCK Inhibitor Y-27632.
The number of patients with diabetes is on an increasing trend, thus leading to the belief that diabetes will be the largest medical problem of the 21st century. Islet transplantation can improve glycometabolic control in patients with type 1 diabetes. We studied the viability of Rho-associated protein kinase (ROCK) inhibitor Y-27632 in a culture system in vitro on freshly isolated rat islets. Islet isolation was conducted on a Lewis rat, and studies of culture solutions were split into two groups, one group using ROCK inhibitor Y-27632, and another without. On the seventh day of culture, we evaluated the differences for the cell morphology, viability, and insulin secretion. The Y-27632 group maintained form better than the group without Y-27632. With strong expression of Bcl-2 observed with the Y-27632 group, and expression suppressed with Bax, inhibition of apoptosis by Y-27632 was confirmed. The Y-27632 group predominantly secreted insulin. For islet transplantation, Y-27632 inhibited cell apoptosis in a graft and was also effective in promoting insulin secretion. We were able to confirm effective morphological and functional culture maintenance by separating islets from a rat and adding ROCK inhibitor Y-27632 to the medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell medicine
Cell medicine MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信