{"title":"探索具身科学学习模拟中学生互动的涌现特征","authors":"Jina Kang, Robb Lindgren, James Planey","doi":"10.3390/MTI2030039","DOIUrl":null,"url":null,"abstract":"Theories of embodied cognition argue that human processes of thinking and reasoning are deeply connected with the actions and perceptions of the body. Recent research suggests that these theories can be successfully applied to the design of learning environments, and new technologies enable multimodal platforms that respond to students’ natural physical activity such as their gestures. This study examines how students engaged with an embodied mixed-reality science learning simulation using advanced gesture recognition techniques to support full-body interaction. The simulation environment acts as a communication platform for students to articulate their understanding of non-linear growth within different science contexts. In particular, this study investigates the different multimodal interaction metrics that were generated as students attempted to make sense of cross-cutting science concepts through using a personalized gesture scheme. Starting with video recordings of students’ full-body gestures, we examined the relationship between these embodied expressions and their subsequent success reasoning about non-linear growth. We report the patterns that we identified, and explicate our findings by detailing a few insightful cases of student interactions. Implications for the design of multimodal interaction technologies and the metrics that were used to investigate different types of students’ interactions while learning are discussed.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/MTI2030039","citationCount":"10","resultStr":"{\"title\":\"Exploring Emergent Features of Student Interaction within an Embodied Science Learning Simulation\",\"authors\":\"Jina Kang, Robb Lindgren, James Planey\",\"doi\":\"10.3390/MTI2030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theories of embodied cognition argue that human processes of thinking and reasoning are deeply connected with the actions and perceptions of the body. Recent research suggests that these theories can be successfully applied to the design of learning environments, and new technologies enable multimodal platforms that respond to students’ natural physical activity such as their gestures. This study examines how students engaged with an embodied mixed-reality science learning simulation using advanced gesture recognition techniques to support full-body interaction. The simulation environment acts as a communication platform for students to articulate their understanding of non-linear growth within different science contexts. In particular, this study investigates the different multimodal interaction metrics that were generated as students attempted to make sense of cross-cutting science concepts through using a personalized gesture scheme. Starting with video recordings of students’ full-body gestures, we examined the relationship between these embodied expressions and their subsequent success reasoning about non-linear growth. We report the patterns that we identified, and explicate our findings by detailing a few insightful cases of student interactions. Implications for the design of multimodal interaction technologies and the metrics that were used to investigate different types of students’ interactions while learning are discussed.\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/MTI2030039\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MTI2030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MTI2030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploring Emergent Features of Student Interaction within an Embodied Science Learning Simulation
Theories of embodied cognition argue that human processes of thinking and reasoning are deeply connected with the actions and perceptions of the body. Recent research suggests that these theories can be successfully applied to the design of learning environments, and new technologies enable multimodal platforms that respond to students’ natural physical activity such as their gestures. This study examines how students engaged with an embodied mixed-reality science learning simulation using advanced gesture recognition techniques to support full-body interaction. The simulation environment acts as a communication platform for students to articulate their understanding of non-linear growth within different science contexts. In particular, this study investigates the different multimodal interaction metrics that were generated as students attempted to make sense of cross-cutting science concepts through using a personalized gesture scheme. Starting with video recordings of students’ full-body gestures, we examined the relationship between these embodied expressions and their subsequent success reasoning about non-linear growth. We report the patterns that we identified, and explicate our findings by detailing a few insightful cases of student interactions. Implications for the design of multimodal interaction technologies and the metrics that were used to investigate different types of students’ interactions while learning are discussed.