双阻尼项非线性记忆波动方程全局解的不存在性

IF 0.7 Q2 MATHEMATICS
M. Berbiche, M. Terchi
{"title":"双阻尼项非线性记忆波动方程全局解的不存在性","authors":"M. Berbiche, M. Terchi","doi":"10.32513/tbilisi/1593223225","DOIUrl":null,"url":null,"abstract":"In this work, we consider the Cauchy problem for a wave equations with frictional and displacement dependent damping terms with nonlinear memory in multi-dimensional space $\\mathbb{R}^{n}$, $n\\geq 1$, we will prove the existence and uniqueness of the local solution and the nonexistence of global weak solutions theorems for any dimension space.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the nonexistence of global solutions for wave equations with double damping terms and nonlinear memory\",\"authors\":\"M. Berbiche, M. Terchi\",\"doi\":\"10.32513/tbilisi/1593223225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the Cauchy problem for a wave equations with frictional and displacement dependent damping terms with nonlinear memory in multi-dimensional space $\\\\mathbb{R}^{n}$, $n\\\\geq 1$, we will prove the existence and uniqueness of the local solution and the nonexistence of global weak solutions theorems for any dimension space.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tbilisi/1593223225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1593223225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多维空间中具有非线性记忆的具有摩擦和位移相关阻尼项的波动方程的柯西问题$\mathbb{R}^{n}$, $n\geq 1$,我们将证明任意维空间的局部解的存在唯一性定理和全局弱解的不存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nonexistence of global solutions for wave equations with double damping terms and nonlinear memory
In this work, we consider the Cauchy problem for a wave equations with frictional and displacement dependent damping terms with nonlinear memory in multi-dimensional space $\mathbb{R}^{n}$, $n\geq 1$, we will prove the existence and uniqueness of the local solution and the nonexistence of global weak solutions theorems for any dimension space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信