Hecke Groups, desins d'Enfants, and Archimedean Solids

Yang-Hui He, James Read
{"title":"Hecke Groups, desins d'Enfants, and Archimedean Solids","authors":"Yang-Hui He, James Read","doi":"10.3389/fphy.2015.00091","DOIUrl":null,"url":null,"abstract":"Grothendieck's dessins d'enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts.","PeriodicalId":49264,"journal":{"name":"Frontiers of Physics in China","volume":"3 1","pages":"91"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fphy.2015.00091","citationCount":"8","resultStr":"{\"title\":\"Hecke Groups, Dessins d'Enfants, and the Archimedean Solids\",\"authors\":\"Yang-Hui He, James Read\",\"doi\":\"10.3389/fphy.2015.00091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grothendieck's dessins d'enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts.\",\"PeriodicalId\":49264,\"journal\":{\"name\":\"Frontiers of Physics in China\",\"volume\":\"3 1\",\"pages\":\"91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3389/fphy.2015.00091\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2015.00091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphy.2015.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在21世纪数学物理的许多领域中,格罗滕迪克的理论出现的频率越来越高。本文回顾了设计与赫克群理论之间的联系。重点讨论了与所谓的阿基米德固体相对应的高度对称的受限类,我们应用这一理论,以便在每种情况下提供一种计算Hecke子群相关共轭类的代表的方法。本文的目的是证明数学物理中出现的问题可以为进一步的研究指出新的和迄今为止意想不到的方向。此外,鉴于许多与阿基米德固体相对应的理论的普遍性,希望本文的计算结果将在数学物理背景下对这些物体的进一步研究中证明是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hecke Groups, Dessins d'Enfants, and the Archimedean Solids
Grothendieck's dessins d'enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信