{"title":"宇宙中的玻色子相干运动","authors":"Jihn E. Kim, Y. Semertzidis, S. Tsujikawa","doi":"10.3389/fphy.2014.00060","DOIUrl":null,"url":null,"abstract":"We review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, inflation, and dark energy. Among these, we pay particular attention to the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment on the panoply of the other roles of spin-0 bosons--such as those for cosmic accelerations at early and late times.","PeriodicalId":49264,"journal":{"name":"Frontiers of Physics in China","volume":"2 1","pages":"60"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fphy.2014.00060","citationCount":"26","resultStr":"{\"title\":\"Bosonic coherent motions in the Universe\",\"authors\":\"Jihn E. Kim, Y. Semertzidis, S. Tsujikawa\",\"doi\":\"10.3389/fphy.2014.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, inflation, and dark energy. Among these, we pay particular attention to the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment on the panoply of the other roles of spin-0 bosons--such as those for cosmic accelerations at early and late times.\",\"PeriodicalId\":49264,\"journal\":{\"name\":\"Frontiers of Physics in China\",\"volume\":\"2 1\",\"pages\":\"60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3389/fphy.2014.00060\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2014.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphy.2014.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, inflation, and dark energy. Among these, we pay particular attention to the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment on the panoply of the other roles of spin-0 bosons--such as those for cosmic accelerations at early and late times.