{"title":"用量子退火炉进行傅里叶变换","authors":"I. Hen","doi":"10.3389/fphy.2014.00044","DOIUrl":null,"url":null,"abstract":"We introduce a set of quantum adiabatic evolutions that we argue may be used as `building blocks', or subroutines, in the onstruction of an adiabatic algorithm that executes Quantum Fourier Transform (QFT) with the same complexity and resources as its gate-model counterpart. One implication of the above construction is the theoretical feasibility of implementing Shor's algorithm for integer factorization in an optimal manner, and any other algorithm that makes use of QFT, on quantum annealing devices. We discuss the possible advantages, as well as the limitations, of the proposed approach as well as its relation to traditional adiabatic quantum computation.","PeriodicalId":49264,"journal":{"name":"Frontiers of Physics in China","volume":"2 1","pages":"44"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fphy.2014.00044","citationCount":"6","resultStr":"{\"title\":\"Fourier-transforming with quantum annealers\",\"authors\":\"I. Hen\",\"doi\":\"10.3389/fphy.2014.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a set of quantum adiabatic evolutions that we argue may be used as `building blocks', or subroutines, in the onstruction of an adiabatic algorithm that executes Quantum Fourier Transform (QFT) with the same complexity and resources as its gate-model counterpart. One implication of the above construction is the theoretical feasibility of implementing Shor's algorithm for integer factorization in an optimal manner, and any other algorithm that makes use of QFT, on quantum annealing devices. We discuss the possible advantages, as well as the limitations, of the proposed approach as well as its relation to traditional adiabatic quantum computation.\",\"PeriodicalId\":49264,\"journal\":{\"name\":\"Frontiers of Physics in China\",\"volume\":\"2 1\",\"pages\":\"44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3389/fphy.2014.00044\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2014.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphy.2014.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a set of quantum adiabatic evolutions that we argue may be used as `building blocks', or subroutines, in the onstruction of an adiabatic algorithm that executes Quantum Fourier Transform (QFT) with the same complexity and resources as its gate-model counterpart. One implication of the above construction is the theoretical feasibility of implementing Shor's algorithm for integer factorization in an optimal manner, and any other algorithm that makes use of QFT, on quantum annealing devices. We discuss the possible advantages, as well as the limitations, of the proposed approach as well as its relation to traditional adiabatic quantum computation.