模糊微分方程的龙格-库塔法数值解

Q4 Mathematics
S. Abbasbandy, T. Viranloo
{"title":"模糊微分方程的龙格-库塔法数值解","authors":"S. Abbasbandy, T. Viranloo","doi":"10.3390/MCA7010041","DOIUrl":null,"url":null,"abstract":"In this paper numerical algorithms for solving 'fuzzy ordinary differential equations' based on Sikkala's derivative of fuzzy process [9], are considered. A numerical method based on the Runge-Kutta method of order 4 in detail is discussed and this is followed by a complete error analysis. The algorithm is illustrated by solving some linear and nonlinear fuzzy Cauchy problems.","PeriodicalId":38616,"journal":{"name":"Nonlinear Studies","volume":"11 1","pages":"117-129"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/MCA7010041","citationCount":"122","resultStr":"{\"title\":\"Numerical Solution of Fuzzy Differential Equation by Runge-Kutta Method\",\"authors\":\"S. Abbasbandy, T. Viranloo\",\"doi\":\"10.3390/MCA7010041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper numerical algorithms for solving 'fuzzy ordinary differential equations' based on Sikkala's derivative of fuzzy process [9], are considered. A numerical method based on the Runge-Kutta method of order 4 in detail is discussed and this is followed by a complete error analysis. The algorithm is illustrated by solving some linear and nonlinear fuzzy Cauchy problems.\",\"PeriodicalId\":38616,\"journal\":{\"name\":\"Nonlinear Studies\",\"volume\":\"11 1\",\"pages\":\"117-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/MCA7010041\",\"citationCount\":\"122\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MCA7010041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MCA7010041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 122

摘要

本文研究了基于模糊过程[9]的Sikkala导数求解模糊常微分方程的数值算法。详细讨论了一种基于4阶龙格-库塔法的数值方法,并进行了完整的误差分析。通过求解一些线性和非线性模糊柯西问题来说明该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of Fuzzy Differential Equation by Runge-Kutta Method
In this paper numerical algorithms for solving 'fuzzy ordinary differential equations' based on Sikkala's derivative of fuzzy process [9], are considered. A numerical method based on the Runge-Kutta method of order 4 in detail is discussed and this is followed by a complete error analysis. The algorithm is illustrated by solving some linear and nonlinear fuzzy Cauchy problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Studies
Nonlinear Studies Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信