生中果皮纤维夹杂物对轻泡沫混凝土耐久性的影响

Q4 Environmental Science
Md Azree Othuman Mydin
{"title":"生中果皮纤维夹杂物对轻泡沫混凝土耐久性的影响","authors":"Md Azree Othuman Mydin","doi":"10.29037/ajstd.685","DOIUrl":null,"url":null,"abstract":"Researchers around the globe have recognised the potential need for lightweight, reliable, easy to use, affordable, and even more sustainable building materials. One of the vanguard proposals has been the procurement, development and use of alternative, non-conventional local building materials, which includes the possibility of utilising lightweight foamed concrete (LFC). LFC is excellent under compression but poor in tensile stress, as it produces multiple microcracks. LFC cannot withstand the tensile stress induced by applied forces without additional reinforcing elements. This research was conducted to examine the potential utilisation of oil palm mesocarp fibre-reinforced (OPMF) LFC in terms of its durability. Two densities, 600kg/m3 and 1200kg/m3, were cast and tested with five different percentages of OPMF, which were 0.00% (control), 0.15%, 0.30%, 0.45% and 0.60%. The parameters evaluated were water absorption, porosity, drying shrinkage, ultrasonic pulse velocity. The results revealed that the inclusion of OPMF in LFC helps to minimise water absorption and the porosity of LFC. Moreover, the inclusion of OPMF also improves the drying shrinkage and ultrasonic pulse velocity of LFC.","PeriodicalId":8479,"journal":{"name":"Asean Journal on Science and Technology for Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Effect of Raw Mesocarp Fibre Inclusion on the Durability Properties of Lightweight Foamed Concrete\",\"authors\":\"Md Azree Othuman Mydin\",\"doi\":\"10.29037/ajstd.685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers around the globe have recognised the potential need for lightweight, reliable, easy to use, affordable, and even more sustainable building materials. One of the vanguard proposals has been the procurement, development and use of alternative, non-conventional local building materials, which includes the possibility of utilising lightweight foamed concrete (LFC). LFC is excellent under compression but poor in tensile stress, as it produces multiple microcracks. LFC cannot withstand the tensile stress induced by applied forces without additional reinforcing elements. This research was conducted to examine the potential utilisation of oil palm mesocarp fibre-reinforced (OPMF) LFC in terms of its durability. Two densities, 600kg/m3 and 1200kg/m3, were cast and tested with five different percentages of OPMF, which were 0.00% (control), 0.15%, 0.30%, 0.45% and 0.60%. The parameters evaluated were water absorption, porosity, drying shrinkage, ultrasonic pulse velocity. The results revealed that the inclusion of OPMF in LFC helps to minimise water absorption and the porosity of LFC. Moreover, the inclusion of OPMF also improves the drying shrinkage and ultrasonic pulse velocity of LFC.\",\"PeriodicalId\":8479,\"journal\":{\"name\":\"Asean Journal on Science and Technology for Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asean Journal on Science and Technology for Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29037/ajstd.685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asean Journal on Science and Technology for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29037/ajstd.685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 7

摘要

世界各地的研究人员已经认识到对轻质、可靠、易于使用、价格合理、甚至更具可持续性的建筑材料的潜在需求。其中一个先锋建议是采购、开发和使用替代的非传统当地建筑材料,其中包括使用轻质泡沫混凝土(LFC)的可能性。LFC在压缩条件下表现优异,但在拉伸条件下表现不佳,产生多个微裂纹。如果没有额外的增强元件,LFC不能承受由施加的力引起的拉应力。本研究旨在研究油棕中果皮纤维增强(OPMF) LFC在耐久性方面的潜在利用。采用0.00%(对照)、0.15%、0.30%、0.45%、0.60%五种不同浓度的OPMF,浇注600kg/m3和1200kg/m3两个密度进行试验。评价参数为吸水率、孔隙率、干燥收缩率、超声脉冲速度。结果表明,在LFC中加入OPMF有助于减少LFC的吸水率和孔隙率。此外,OPMF的加入也改善了LFC的干燥收缩率和超声脉冲速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Raw Mesocarp Fibre Inclusion on the Durability Properties of Lightweight Foamed Concrete
Researchers around the globe have recognised the potential need for lightweight, reliable, easy to use, affordable, and even more sustainable building materials. One of the vanguard proposals has been the procurement, development and use of alternative, non-conventional local building materials, which includes the possibility of utilising lightweight foamed concrete (LFC). LFC is excellent under compression but poor in tensile stress, as it produces multiple microcracks. LFC cannot withstand the tensile stress induced by applied forces without additional reinforcing elements. This research was conducted to examine the potential utilisation of oil palm mesocarp fibre-reinforced (OPMF) LFC in terms of its durability. Two densities, 600kg/m3 and 1200kg/m3, were cast and tested with five different percentages of OPMF, which were 0.00% (control), 0.15%, 0.30%, 0.45% and 0.60%. The parameters evaluated were water absorption, porosity, drying shrinkage, ultrasonic pulse velocity. The results revealed that the inclusion of OPMF in LFC helps to minimise water absorption and the porosity of LFC. Moreover, the inclusion of OPMF also improves the drying shrinkage and ultrasonic pulse velocity of LFC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asean Journal on Science and Technology for Development
Asean Journal on Science and Technology for Development Environmental Science-Waste Management and Disposal
CiteScore
1.50
自引率
0.00%
发文量
10
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信