{"title":"新型切花护理剂吡啶羧酸促进根系伸长","authors":"S. Satoh, Yoshihiro Nomura","doi":"10.3117/PLANTROOT.11.40","DOIUrl":null,"url":null,"abstract":"Pyridinedicarboxylic acid (PDCA) analogs, including 2,3-, 2,4-, 2,5-, 2,6-, 3,4and 3,5PDCA, accelerate flower opening and retard senescence of spray-type carnation flowers. In addition the present study revealed that 2,3-PDCA promoted root elongation in lettuce, carrot and rice seedlings, whereas 2,4-PDCA inhibited it. Then, the action of PDCA and pyridinecarboxylic acid (PCA) analogs on root elongation was further examined using rice seedlings. 2,3-, 3,4and 3,5PDCA promoted rice root elongation, whereas 2,4and 2,6-PDCA inhibited, and 2,5-PDCA had little effect. 3-PCA (nicotinic acid) promoted rice root elongation, but 2and 4-PCA did not. Moreover, 3-PCA amide (nicotinamide) did not promote root elongation. These findings indicated that a carboxyl group substituted on position 3 of the pyridine ring is necessary to promote root elongation, and that the promoting effect of 3-PCA was not from its action as vitamin B3, but from its intrinsic activity as a 3-COOH substituted pyridine. On the other hand, all the PCA and PDCA analogs tested in this study, except 2,6-PDCA and 4-PCA, promoted shoot elongation of rice seedlings.","PeriodicalId":20205,"journal":{"name":"Plant Root","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3117/PLANTROOT.11.40","citationCount":"6","resultStr":"{\"title\":\"Promotion of root elongation by pyridinecarboxylic acids known as novel cut flower care agents\",\"authors\":\"S. Satoh, Yoshihiro Nomura\",\"doi\":\"10.3117/PLANTROOT.11.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pyridinedicarboxylic acid (PDCA) analogs, including 2,3-, 2,4-, 2,5-, 2,6-, 3,4and 3,5PDCA, accelerate flower opening and retard senescence of spray-type carnation flowers. In addition the present study revealed that 2,3-PDCA promoted root elongation in lettuce, carrot and rice seedlings, whereas 2,4-PDCA inhibited it. Then, the action of PDCA and pyridinecarboxylic acid (PCA) analogs on root elongation was further examined using rice seedlings. 2,3-, 3,4and 3,5PDCA promoted rice root elongation, whereas 2,4and 2,6-PDCA inhibited, and 2,5-PDCA had little effect. 3-PCA (nicotinic acid) promoted rice root elongation, but 2and 4-PCA did not. Moreover, 3-PCA amide (nicotinamide) did not promote root elongation. These findings indicated that a carboxyl group substituted on position 3 of the pyridine ring is necessary to promote root elongation, and that the promoting effect of 3-PCA was not from its action as vitamin B3, but from its intrinsic activity as a 3-COOH substituted pyridine. On the other hand, all the PCA and PDCA analogs tested in this study, except 2,6-PDCA and 4-PCA, promoted shoot elongation of rice seedlings.\",\"PeriodicalId\":20205,\"journal\":{\"name\":\"Plant Root\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3117/PLANTROOT.11.40\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Root\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3117/PLANTROOT.11.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Root","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3117/PLANTROOT.11.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Promotion of root elongation by pyridinecarboxylic acids known as novel cut flower care agents
Pyridinedicarboxylic acid (PDCA) analogs, including 2,3-, 2,4-, 2,5-, 2,6-, 3,4and 3,5PDCA, accelerate flower opening and retard senescence of spray-type carnation flowers. In addition the present study revealed that 2,3-PDCA promoted root elongation in lettuce, carrot and rice seedlings, whereas 2,4-PDCA inhibited it. Then, the action of PDCA and pyridinecarboxylic acid (PCA) analogs on root elongation was further examined using rice seedlings. 2,3-, 3,4and 3,5PDCA promoted rice root elongation, whereas 2,4and 2,6-PDCA inhibited, and 2,5-PDCA had little effect. 3-PCA (nicotinic acid) promoted rice root elongation, but 2and 4-PCA did not. Moreover, 3-PCA amide (nicotinamide) did not promote root elongation. These findings indicated that a carboxyl group substituted on position 3 of the pyridine ring is necessary to promote root elongation, and that the promoting effect of 3-PCA was not from its action as vitamin B3, but from its intrinsic activity as a 3-COOH substituted pyridine. On the other hand, all the PCA and PDCA analogs tested in this study, except 2,6-PDCA and 4-PCA, promoted shoot elongation of rice seedlings.
期刊介绍:
Plant Root publishes original papers, either theoretical or experimental, that provide novel insights into plant roots. The Journal’s subjects include, but are not restricted to, anatomy and morphology, cellular and molecular biology, biochemistry, physiology, interactions with soil, mineral nutrients, water, symbionts and pathogens, food culture, together with ecological, genetic and methodological aspects related to plant roots and rhizosphere. Work at any scale, from the molecular to the community level, is welcomed.