A. Phetsahai, P. Eiamchai, K. Thamaphat, P. Limsuwan
{"title":"基于离心分离的三角形银纳米板和多形胶体银纳米颗粒制备表面增强拉曼散射基底","authors":"A. Phetsahai, P. Eiamchai, K. Thamaphat, P. Limsuwan","doi":"10.3116/16091833/24/4/04046/2023","DOIUrl":null,"url":null,"abstract":". We synthesize and separate triangular silver nanoplates (TSNPs) from a mixture of colloidal silver nanoparticles of different shapes and sizes, aiming at fabrication of substrates for a surface-enhanced Raman scattering (SERS). The TSNPs are successfully synthesized via a photochemical process involving Ag nanoseeds. This is confirmed by the UV-visible spectroscopy and transmission electron-microscopy analyses. Centrifugation-based separation techniques are employed to isolate the TSNPs and minimize the other nanoparticle morphologies, thus resulting in a good SERS performance. The separated TSNPs manifest a remarkable sensitivity, with the detection limit amounting to 10 –12 M in the case of Rhodamine 6G molecules. A linear relationship between the Rhodamine 6G concentration and the Raman-peak intensity demonstrates a great potential of our SERS technique. Hence, our study combines a successful synthesis and separation of the TSNPs with demonstration of their efficient SERS performance. The latter offers new possibilities for the ultrasensitive trace-level detection of substances. These findings contribute to the development of reliable SERS measurements and the advance in the field of nanomaterial-based sensing techniques.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centrifugation-based separation of triangular silver nanoplates from multi-shaped colloidal silver nanoparticles for fabrication of surface-enhanced Raman-scattering substrates\",\"authors\":\"A. Phetsahai, P. Eiamchai, K. Thamaphat, P. Limsuwan\",\"doi\":\"10.3116/16091833/24/4/04046/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We synthesize and separate triangular silver nanoplates (TSNPs) from a mixture of colloidal silver nanoparticles of different shapes and sizes, aiming at fabrication of substrates for a surface-enhanced Raman scattering (SERS). The TSNPs are successfully synthesized via a photochemical process involving Ag nanoseeds. This is confirmed by the UV-visible spectroscopy and transmission electron-microscopy analyses. Centrifugation-based separation techniques are employed to isolate the TSNPs and minimize the other nanoparticle morphologies, thus resulting in a good SERS performance. The separated TSNPs manifest a remarkable sensitivity, with the detection limit amounting to 10 –12 M in the case of Rhodamine 6G molecules. A linear relationship between the Rhodamine 6G concentration and the Raman-peak intensity demonstrates a great potential of our SERS technique. Hence, our study combines a successful synthesis and separation of the TSNPs with demonstration of their efficient SERS performance. The latter offers new possibilities for the ultrasensitive trace-level detection of substances. These findings contribute to the development of reliable SERS measurements and the advance in the field of nanomaterial-based sensing techniques.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3116/16091833/24/4/04046/2023\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3116/16091833/24/4/04046/2023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Centrifugation-based separation of triangular silver nanoplates from multi-shaped colloidal silver nanoparticles for fabrication of surface-enhanced Raman-scattering substrates
. We synthesize and separate triangular silver nanoplates (TSNPs) from a mixture of colloidal silver nanoparticles of different shapes and sizes, aiming at fabrication of substrates for a surface-enhanced Raman scattering (SERS). The TSNPs are successfully synthesized via a photochemical process involving Ag nanoseeds. This is confirmed by the UV-visible spectroscopy and transmission electron-microscopy analyses. Centrifugation-based separation techniques are employed to isolate the TSNPs and minimize the other nanoparticle morphologies, thus resulting in a good SERS performance. The separated TSNPs manifest a remarkable sensitivity, with the detection limit amounting to 10 –12 M in the case of Rhodamine 6G molecules. A linear relationship between the Rhodamine 6G concentration and the Raman-peak intensity demonstrates a great potential of our SERS technique. Hence, our study combines a successful synthesis and separation of the TSNPs with demonstration of their efficient SERS performance. The latter offers new possibilities for the ultrasensitive trace-level detection of substances. These findings contribute to the development of reliable SERS measurements and the advance in the field of nanomaterial-based sensing techniques.