具有克尔非线性折射率定律的Lakshmanan-Porsezian-Daniel模型的非线性色散稳态光学孤子

IF 3.9 4区 物理与天体物理 0 OPTICS
A. R. Adem, B. P. Ntsime, A. Biswas, Salam Khan, A. K. Alzahrani, M. Belić
{"title":"具有克尔非线性折射率定律的Lakshmanan-Porsezian-Daniel模型的非线性色散稳态光学孤子","authors":"A. R. Adem, B. P. Ntsime, A. Biswas, Salam Khan, A. K. Alzahrani, M. Belić","doi":"10.3116/16091833/22/2/83/2021","DOIUrl":null,"url":null,"abstract":". We study stationary optical solitons for the case of Lakshmanan– Porsezian–Daniel model with nonlinear chromatic dispersion and a Kerr law of nonlinear refractive index. The solution is expressed in terms of a special function and its structure is described in details.","PeriodicalId":23397,"journal":{"name":"Ukrainian Journal of Physical Optics","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index\",\"authors\":\"A. R. Adem, B. P. Ntsime, A. Biswas, Salam Khan, A. K. Alzahrani, M. Belić\",\"doi\":\"10.3116/16091833/22/2/83/2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study stationary optical solitons for the case of Lakshmanan– Porsezian–Daniel model with nonlinear chromatic dispersion and a Kerr law of nonlinear refractive index. The solution is expressed in terms of a special function and its structure is described in details.\",\"PeriodicalId\":23397,\"journal\":{\"name\":\"Ukrainian Journal of Physical Optics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Journal of Physical Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3116/16091833/22/2/83/2021\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Physical Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3116/16091833/22/2/83/2021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 107

摘要

。研究了具有非线性色散的Lakshmanan - Porsezian-Daniel模型和非线性折射率的Kerr定律下的稳态光学孤子。用一个特殊的函数来表示该解,并对其结构进行了详细的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index
. We study stationary optical solitons for the case of Lakshmanan– Porsezian–Daniel model with nonlinear chromatic dispersion and a Kerr law of nonlinear refractive index. The solution is expressed in terms of a special function and its structure is described in details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: “Ukrainian Journal of Physical Optics” contains original and review articles in the fields of crystal optics, piezo-, electro-, magneto- and acoustooptics, optical properties of solids and liquids in the course of phase transitions, nonlinear optics, holography, singular optics, laser physics, spectroscopy, biooptics, physical principles of operation of optoelectronic devices and systems, which need rapid publication. The journal was founded in 2000 by the Institute of Physical Optics of the Ministry of Education and Science of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信