琼斯图像融合的形式主义

IF 3.9 4区 物理与天体物理 0 OPTICS
Khaustov D. Ye, Khaustov Ya. Ye, Ryzhov Ye, Lychkowskyy, R. Vlokh, Nastishin Yu, Hetman Petro Sahaidachnyi
{"title":"琼斯图像融合的形式主义","authors":"Khaustov D. Ye, Khaustov Ya. Ye, Ryzhov Ye, Lychkowskyy, R. Vlokh, Nastishin Yu, Hetman Petro Sahaidachnyi","doi":"10.3116/16091833/22/3/151/2021","DOIUrl":null,"url":null,"abstract":". We suggest a novel approach for the fusion of visible ( u ) and infrared (  ) images, basing on analogy between the mathematical forms of a Jones vector of elliptically polarized light wave and a complex 2D vector 0   composed of the images u and  . Since there is no restriction on which of the two images should be chosen as a real (or imaginary) component, one can construct 0 u i     or     0 1 2 , Tr pos iu     , where the superscript “ Tr ” denotes the operation of transposing, i.e. 0   the analogy with the Jones vector of light wave, the vector 0 , pos neg   can be transformed as 0 , neg pos J      , with J being a complex 2 2  -matrix, an analogue of the Jones matrix for optically anisotropic medium. The above analogy with the Jones formalism allows one to synthesize the fused images using three types of the fusion algorithms, ‘amplitude’, ‘azimuth’ and ‘ellipticity’ ones. Varying the components of","PeriodicalId":23397,"journal":{"name":"Ukrainian Journal of Physical Optics","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Jones formalism for image fusion\",\"authors\":\"Khaustov D. Ye, Khaustov Ya. Ye, Ryzhov Ye, Lychkowskyy, R. Vlokh, Nastishin Yu, Hetman Petro Sahaidachnyi\",\"doi\":\"10.3116/16091833/22/3/151/2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We suggest a novel approach for the fusion of visible ( u ) and infrared (  ) images, basing on analogy between the mathematical forms of a Jones vector of elliptically polarized light wave and a complex 2D vector 0   composed of the images u and  . Since there is no restriction on which of the two images should be chosen as a real (or imaginary) component, one can construct 0 u i     or     0 1 2 , Tr pos iu     , where the superscript “ Tr ” denotes the operation of transposing, i.e. 0   the analogy with the Jones vector of light wave, the vector 0 , pos neg   can be transformed as 0 , neg pos J      , with J being a complex 2 2  -matrix, an analogue of the Jones matrix for optically anisotropic medium. The above analogy with the Jones formalism allows one to synthesize the fused images using three types of the fusion algorithms, ‘amplitude’, ‘azimuth’ and ‘ellipticity’ ones. Varying the components of\",\"PeriodicalId\":23397,\"journal\":{\"name\":\"Ukrainian Journal of Physical Optics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Journal of Physical Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3116/16091833/22/3/151/2021\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Physical Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3116/16091833/22/3/151/2021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 7

摘要

. 本文通过类比椭圆偏振光琼斯向量的数学形式,提出了一种新的可见光(u)和红外()图像融合的方法。由于没有限制这两幅图片,应该选择一个真正的(或虚拟)组件,一个可以构造0 u我或0 1 2,Tr pos iu,上标“Tr”表示操作的置换,即0类比与光波的琼斯矢量,向量0,pos neg可以转换为0,neg pos J,J是一个复杂的2 2矩阵,一个模拟的琼斯矩阵光学各向异性介质。上述与琼斯形式化的类比允许使用三种类型的融合算法(“振幅”、“方位角”和“椭圆”)来合成融合图像。改变的成分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jones formalism for image fusion
. We suggest a novel approach for the fusion of visible ( u ) and infrared (  ) images, basing on analogy between the mathematical forms of a Jones vector of elliptically polarized light wave and a complex 2D vector 0   composed of the images u and  . Since there is no restriction on which of the two images should be chosen as a real (or imaginary) component, one can construct 0 u i     or     0 1 2 , Tr pos iu     , where the superscript “ Tr ” denotes the operation of transposing, i.e. 0   the analogy with the Jones vector of light wave, the vector 0 , pos neg   can be transformed as 0 , neg pos J      , with J being a complex 2 2  -matrix, an analogue of the Jones matrix for optically anisotropic medium. The above analogy with the Jones formalism allows one to synthesize the fused images using three types of the fusion algorithms, ‘amplitude’, ‘azimuth’ and ‘ellipticity’ ones. Varying the components of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: “Ukrainian Journal of Physical Optics” contains original and review articles in the fields of crystal optics, piezo-, electro-, magneto- and acoustooptics, optical properties of solids and liquids in the course of phase transitions, nonlinear optics, holography, singular optics, laser physics, spectroscopy, biooptics, physical principles of operation of optoelectronic devices and systems, which need rapid publication. The journal was founded in 2000 by the Institute of Physical Optics of the Ministry of Education and Science of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信