{"title":"基于空心光子晶体光纤的超灵敏太赫兹化学传感器","authors":"S. Reza, A. Habib","doi":"10.3116/16091833/21/1/8/2020","DOIUrl":null,"url":null,"abstract":"We suggest a new kind of sensor based on a hollow-core photonic crystal fibre. It is aimed at identification of different chemicals using terahertz-range electromagnetic signals. Software based on a full-vectorial finite-element method is used to design this fibre and explore its propagation characteristics. By filling the core air hole with aqueous analytes and tuning different designing parameters at 2.4 THz, one can achieve the maximal relative sensitivities 98.5, 98.2 and 97.6% respectively for benzene, ethanol and water analytes. Moreover, the confinement loss and the bulk material loss as low as 1.64×10 cm and 0.004 cm can simultaneously be obtained under optimal conditions. The fibre suggested by us can be easily manufactured using modern fabrication techniques. We hope that our sensor can be efficiently used in many real-life applications.","PeriodicalId":23397,"journal":{"name":"Ukrainian Journal of Physical Optics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Extremely sensitive chemical sensor for terahertz regime based on a hollow-core photonic crystal fibre\",\"authors\":\"S. Reza, A. Habib\",\"doi\":\"10.3116/16091833/21/1/8/2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We suggest a new kind of sensor based on a hollow-core photonic crystal fibre. It is aimed at identification of different chemicals using terahertz-range electromagnetic signals. Software based on a full-vectorial finite-element method is used to design this fibre and explore its propagation characteristics. By filling the core air hole with aqueous analytes and tuning different designing parameters at 2.4 THz, one can achieve the maximal relative sensitivities 98.5, 98.2 and 97.6% respectively for benzene, ethanol and water analytes. Moreover, the confinement loss and the bulk material loss as low as 1.64×10 cm and 0.004 cm can simultaneously be obtained under optimal conditions. The fibre suggested by us can be easily manufactured using modern fabrication techniques. We hope that our sensor can be efficiently used in many real-life applications.\",\"PeriodicalId\":23397,\"journal\":{\"name\":\"Ukrainian Journal of Physical Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Journal of Physical Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3116/16091833/21/1/8/2020\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Physical Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3116/16091833/21/1/8/2020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"OPTICS","Score":null,"Total":0}
Extremely sensitive chemical sensor for terahertz regime based on a hollow-core photonic crystal fibre
We suggest a new kind of sensor based on a hollow-core photonic crystal fibre. It is aimed at identification of different chemicals using terahertz-range electromagnetic signals. Software based on a full-vectorial finite-element method is used to design this fibre and explore its propagation characteristics. By filling the core air hole with aqueous analytes and tuning different designing parameters at 2.4 THz, one can achieve the maximal relative sensitivities 98.5, 98.2 and 97.6% respectively for benzene, ethanol and water analytes. Moreover, the confinement loss and the bulk material loss as low as 1.64×10 cm and 0.004 cm can simultaneously be obtained under optimal conditions. The fibre suggested by us can be easily manufactured using modern fabrication techniques. We hope that our sensor can be efficiently used in many real-life applications.
期刊介绍:
“Ukrainian Journal of Physical Optics” contains original and review articles in the fields of crystal optics, piezo-, electro-, magneto- and acoustooptics, optical properties of solids and liquids in the course of phase transitions, nonlinear optics, holography, singular optics, laser physics, spectroscopy, biooptics, physical principles of operation of optoelectronic devices and systems, which need rapid publication.
The journal was founded in 2000 by the Institute of Physical Optics of the Ministry of Education and Science of Ukraine.