非线性弹性多层非均匀梁结构中的分层分析

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
V. Ri̇zov
{"title":"非线性弹性多层非均匀梁结构中的分层分析","authors":"V. Ri̇zov","doi":"10.30765/er.40.3.07","DOIUrl":null,"url":null,"abstract":"This paper presents investigation of delamination fracture behavior of multilayered non-linear elastic beam configurations by using the Ramberg-Osgood stress-strain relation. It is assumed that each layer exhibits continuous material inhomogeneity along the width as well as along thickness of the layer. An approach for determination of the strain energy release rate is developed for a delamination crack located arbitrary along the multilayered beam height. The approach can be applied for multilayered beams of arbitrary cross-section under combination of axial force and bending moments. The layers may have different thickness and material properties. The number of layers is arbitrary. The approach is applied for analyzing the delamination fracture behavior of a multilayered beam configuration subjected to four-point bending. The beam has a rectangular cross-section. The delamination crack is located symmetrically with respect to the beam midspan. The strain energy release rate is derived assuming that the modulus of elasticity varies continuously in the cross-section of each layer according to a hyperbolic law. In order to verify the solution to the strain energy release rate, the delamination fracture behavior of the multilayered non-linear elastic four-point bending beam configuration is studied also by applying the method of the J-integral. The solution to the strain energy release rate derived in the present paper is used in order to perform a parametric study of delamination.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":"40 1","pages":"65-77"},"PeriodicalIF":0.7000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyses of delaminations in non-linear elastic multilayered inhomogeneous beam configurations\",\"authors\":\"V. Ri̇zov\",\"doi\":\"10.30765/er.40.3.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents investigation of delamination fracture behavior of multilayered non-linear elastic beam configurations by using the Ramberg-Osgood stress-strain relation. It is assumed that each layer exhibits continuous material inhomogeneity along the width as well as along thickness of the layer. An approach for determination of the strain energy release rate is developed for a delamination crack located arbitrary along the multilayered beam height. The approach can be applied for multilayered beams of arbitrary cross-section under combination of axial force and bending moments. The layers may have different thickness and material properties. The number of layers is arbitrary. The approach is applied for analyzing the delamination fracture behavior of a multilayered beam configuration subjected to four-point bending. The beam has a rectangular cross-section. The delamination crack is located symmetrically with respect to the beam midspan. The strain energy release rate is derived assuming that the modulus of elasticity varies continuously in the cross-section of each layer according to a hyperbolic law. In order to verify the solution to the strain energy release rate, the delamination fracture behavior of the multilayered non-linear elastic four-point bending beam configuration is studied also by applying the method of the J-integral. The solution to the strain energy release rate derived in the present paper is used in order to perform a parametric study of delamination.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":\"40 1\",\"pages\":\"65-77\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.40.3.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.40.3.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Ramberg-Osgood应力-应变关系研究了多层非线性弹性梁结构的分层断裂行为。假设每一层沿厚度和宽度均表现出连续的材料不均匀性。提出了沿多层梁高度任意位置的分层裂纹应变能释放率的计算方法。该方法可应用于任意截面多层梁在轴力和弯矩组合作用下的受力分析。这些层可能具有不同的厚度和材料特性。层数是任意的。将该方法应用于多点弯曲作用下多层梁结构的分层断裂行为分析。梁的横截面是矩形的。分层裂缝相对于梁跨中对称分布。假设弹性模量在各层截面上按双曲型规律连续变化,推导出应变能释放率。为了验证应变能释放率的解,采用j积分法对多层非线性弹性四点弯曲梁的分层断裂行为进行了研究。本文采用应变能释放率的解来进行分层的参数化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyses of delaminations in non-linear elastic multilayered inhomogeneous beam configurations
This paper presents investigation of delamination fracture behavior of multilayered non-linear elastic beam configurations by using the Ramberg-Osgood stress-strain relation. It is assumed that each layer exhibits continuous material inhomogeneity along the width as well as along thickness of the layer. An approach for determination of the strain energy release rate is developed for a delamination crack located arbitrary along the multilayered beam height. The approach can be applied for multilayered beams of arbitrary cross-section under combination of axial force and bending moments. The layers may have different thickness and material properties. The number of layers is arbitrary. The approach is applied for analyzing the delamination fracture behavior of a multilayered beam configuration subjected to four-point bending. The beam has a rectangular cross-section. The delamination crack is located symmetrically with respect to the beam midspan. The strain energy release rate is derived assuming that the modulus of elasticity varies continuously in the cross-section of each layer according to a hyperbolic law. In order to verify the solution to the strain energy release rate, the delamination fracture behavior of the multilayered non-linear elastic four-point bending beam configuration is studied also by applying the method of the J-integral. The solution to the strain energy release rate derived in the present paper is used in order to perform a parametric study of delamination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Review
Engineering Review ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
0.00%
发文量
8
期刊介绍: Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信