{"title":"屋顶坡度对高层建筑气动特性的影响","authors":"I. Boumrar, A. Becheur","doi":"10.30765/ER.1481","DOIUrl":null,"url":null,"abstract":"Roof shape of a building placed in a wind flow has particularly significant effects on this flow, in its wake, immediately at the vicinity and far from the structure. This influence is given by an experimental study, undertaken on rectangular models of reduced scale skyscrapers (1:1000), in a subsonic wind tunnel that enabled us to measure the exerted force by wind flow on windward face of the buildings, as well as the pressure distribution according to the longitudinal and the transverse building directions. The drag force acting on the models windward face is very affected by the building slope roof; these results are available for a normal and inclined wind direction. A numerical simulation is carried out to reproduce complex flow developed around the different building models, using Fluent software. We obtain the parietal pressure distribution on the various building faces and we compare the numerical values to the experimental data obtained in the wind tunnel, both are in good agreement with those provided by the international ASCE code. The numerical simulation indicates that complex structure vortices are developed at the buildings wake and allows us a better understanding of the flow phenomena. Analysis of the numerical results reveals a distinct evolution of pressure and velocity fields, the induced downstream flow is particularly complex. The presence of a roof deforms swirling zones: the zone of recirculation in buildings wake is stretched and the flow diagram is modified, which has direct effects on the measured wind force and the pressure distribution.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Roof slope effects on the aerodynamic characteristics of tall buildings\",\"authors\":\"I. Boumrar, A. Becheur\",\"doi\":\"10.30765/ER.1481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roof shape of a building placed in a wind flow has particularly significant effects on this flow, in its wake, immediately at the vicinity and far from the structure. This influence is given by an experimental study, undertaken on rectangular models of reduced scale skyscrapers (1:1000), in a subsonic wind tunnel that enabled us to measure the exerted force by wind flow on windward face of the buildings, as well as the pressure distribution according to the longitudinal and the transverse building directions. The drag force acting on the models windward face is very affected by the building slope roof; these results are available for a normal and inclined wind direction. A numerical simulation is carried out to reproduce complex flow developed around the different building models, using Fluent software. We obtain the parietal pressure distribution on the various building faces and we compare the numerical values to the experimental data obtained in the wind tunnel, both are in good agreement with those provided by the international ASCE code. The numerical simulation indicates that complex structure vortices are developed at the buildings wake and allows us a better understanding of the flow phenomena. Analysis of the numerical results reveals a distinct evolution of pressure and velocity fields, the induced downstream flow is particularly complex. The presence of a roof deforms swirling zones: the zone of recirculation in buildings wake is stretched and the flow diagram is modified, which has direct effects on the measured wind force and the pressure distribution.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/ER.1481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/ER.1481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Roof slope effects on the aerodynamic characteristics of tall buildings
Roof shape of a building placed in a wind flow has particularly significant effects on this flow, in its wake, immediately at the vicinity and far from the structure. This influence is given by an experimental study, undertaken on rectangular models of reduced scale skyscrapers (1:1000), in a subsonic wind tunnel that enabled us to measure the exerted force by wind flow on windward face of the buildings, as well as the pressure distribution according to the longitudinal and the transverse building directions. The drag force acting on the models windward face is very affected by the building slope roof; these results are available for a normal and inclined wind direction. A numerical simulation is carried out to reproduce complex flow developed around the different building models, using Fluent software. We obtain the parietal pressure distribution on the various building faces and we compare the numerical values to the experimental data obtained in the wind tunnel, both are in good agreement with those provided by the international ASCE code. The numerical simulation indicates that complex structure vortices are developed at the buildings wake and allows us a better understanding of the flow phenomena. Analysis of the numerical results reveals a distinct evolution of pressure and velocity fields, the induced downstream flow is particularly complex. The presence of a roof deforms swirling zones: the zone of recirculation in buildings wake is stretched and the flow diagram is modified, which has direct effects on the measured wind force and the pressure distribution.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.