S. T. Kebir, N. Cheggaga, M. S. A. Cheikh, M. Haddadi, H. Rahmani
{"title":"光伏发电机组故障诊断技术的综合研究","authors":"S. T. Kebir, N. Cheggaga, M. S. A. Cheikh, M. Haddadi, H. Rahmani","doi":"10.30765/ER.1714","DOIUrl":null,"url":null,"abstract":"Recently, many focuses have been done in the field of renewable energies, especially in solar photovoltaic energy. Photovoltaic generator, considered as the heart of any photovoltaic installation, exhibits sometimes malfunctions which involve degradations on the overall photovoltaic plant. Therefore, diagnosis techniques are required to ensure failures detection. They avoid dangerous risks, prevent damages, allow protection, and extend their healthy life. For these purposes, many recent studies have given focuses on this field. This paper summarizes a large number of such interesting works. It presents a survey of photovoltaic generator degradations kinds, several types of faults, and their major diagnosis techniques. Comparative studies and some critical analyses are given. Other trending diagnosis solutions are also discussed. A proposed neural networks-based technique is developed to clarify the main process of diagnosis techniques, using artificial intelligence. This method shows good results for modelling and diagnosing the healthy and faulty (shaded) photovoltaic array.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive study of diagnosis faults techniques occurring in photovoltaic generators\",\"authors\":\"S. T. Kebir, N. Cheggaga, M. S. A. Cheikh, M. Haddadi, H. Rahmani\",\"doi\":\"10.30765/ER.1714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many focuses have been done in the field of renewable energies, especially in solar photovoltaic energy. Photovoltaic generator, considered as the heart of any photovoltaic installation, exhibits sometimes malfunctions which involve degradations on the overall photovoltaic plant. Therefore, diagnosis techniques are required to ensure failures detection. They avoid dangerous risks, prevent damages, allow protection, and extend their healthy life. For these purposes, many recent studies have given focuses on this field. This paper summarizes a large number of such interesting works. It presents a survey of photovoltaic generator degradations kinds, several types of faults, and their major diagnosis techniques. Comparative studies and some critical analyses are given. Other trending diagnosis solutions are also discussed. A proposed neural networks-based technique is developed to clarify the main process of diagnosis techniques, using artificial intelligence. This method shows good results for modelling and diagnosing the healthy and faulty (shaded) photovoltaic array.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/ER.1714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/ER.1714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A comprehensive study of diagnosis faults techniques occurring in photovoltaic generators
Recently, many focuses have been done in the field of renewable energies, especially in solar photovoltaic energy. Photovoltaic generator, considered as the heart of any photovoltaic installation, exhibits sometimes malfunctions which involve degradations on the overall photovoltaic plant. Therefore, diagnosis techniques are required to ensure failures detection. They avoid dangerous risks, prevent damages, allow protection, and extend their healthy life. For these purposes, many recent studies have given focuses on this field. This paper summarizes a large number of such interesting works. It presents a survey of photovoltaic generator degradations kinds, several types of faults, and their major diagnosis techniques. Comparative studies and some critical analyses are given. Other trending diagnosis solutions are also discussed. A proposed neural networks-based technique is developed to clarify the main process of diagnosis techniques, using artificial intelligence. This method shows good results for modelling and diagnosing the healthy and faulty (shaded) photovoltaic array.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.