基于多目标粒子群优化的电子冰球运动控制

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
V. Panwar, A. Pandey, M. E. Hasan
{"title":"基于多目标粒子群优化的电子冰球运动控制","authors":"V. Panwar, A. Pandey, M. E. Hasan","doi":"10.30765/er.1647","DOIUrl":null,"url":null,"abstract":"This article describes the velocity-based motion and orientation control method for a differential-driven two-wheeled E-puck Robot (DDER) using the Multi-Objective Particle Swarm Optimization (MPSO) algorithm in the Virtual Robot Experimentation Platform (V-REP) software environment. The wheel velocities data and Infra-Red (IR) sensors reading make the multi-objective fitness functions for MPSO. We use front, left, and right IR sensors reading and right wheel velocity data to design the first fitness function for MPSO. Similarly, the front, left, and right IR sensors reading, and left wheel velocity data have been taken for making the second fitness function for MPSO. The multi-objective fitness functions of MPSO minimize the motion and orientation of the DDER during navigation. Due to the minimization of motion and orientation, the DDER covers less distance to reach the goal and takes less time. The Two-Dimensional (2D) and Three-Dimensional (3D) navigation results of the DDER among the scattered obstacles have been presented in the V-REP software environment. The comparative analysis with previously developed Invasive Weed Optimization (IWO) algorithm has also been performed to show the effectiveness and efficiency of the proposed MPSO algorithm.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-puck motion control using multi-objective particle swarm optimization\",\"authors\":\"V. Panwar, A. Pandey, M. E. Hasan\",\"doi\":\"10.30765/er.1647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the velocity-based motion and orientation control method for a differential-driven two-wheeled E-puck Robot (DDER) using the Multi-Objective Particle Swarm Optimization (MPSO) algorithm in the Virtual Robot Experimentation Platform (V-REP) software environment. The wheel velocities data and Infra-Red (IR) sensors reading make the multi-objective fitness functions for MPSO. We use front, left, and right IR sensors reading and right wheel velocity data to design the first fitness function for MPSO. Similarly, the front, left, and right IR sensors reading, and left wheel velocity data have been taken for making the second fitness function for MPSO. The multi-objective fitness functions of MPSO minimize the motion and orientation of the DDER during navigation. Due to the minimization of motion and orientation, the DDER covers less distance to reach the goal and takes less time. The Two-Dimensional (2D) and Three-Dimensional (3D) navigation results of the DDER among the scattered obstacles have been presented in the V-REP software environment. The comparative analysis with previously developed Invasive Weed Optimization (IWO) algorithm has also been performed to show the effectiveness and efficiency of the proposed MPSO algorithm.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.1647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.1647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文在虚拟机器人实验平台(V-REP)软件环境下,采用多目标粒子群优化(MPSO)算法对差速驱动两轮E-puck机器人(DDER)进行了基于速度的运动和方向控制。车轮速度数据和红外传感器数据构成了MPSO的多目标适应度函数。我们使用前、左、右红外传感器读取和右车轮速度数据来设计MPSO的第一个适应度函数。同样地,取前、左、右红外传感器读数和左车轮速度数据作为MPSO的第二个适应度函数。MPSO的多目标适应度函数最大限度地减少了DDER在导航过程中的运动和方向。由于运动和方向的最小化,DDER覆盖更短的距离达到目标,花费更少的时间。在V-REP软件环境下,给出了雷达在分散障碍物中的二维(2D)和三维(3D)导航结果。通过与已有的入侵杂草优化算法(IWO)的对比分析,验证了MPSO算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-puck motion control using multi-objective particle swarm optimization
This article describes the velocity-based motion and orientation control method for a differential-driven two-wheeled E-puck Robot (DDER) using the Multi-Objective Particle Swarm Optimization (MPSO) algorithm in the Virtual Robot Experimentation Platform (V-REP) software environment. The wheel velocities data and Infra-Red (IR) sensors reading make the multi-objective fitness functions for MPSO. We use front, left, and right IR sensors reading and right wheel velocity data to design the first fitness function for MPSO. Similarly, the front, left, and right IR sensors reading, and left wheel velocity data have been taken for making the second fitness function for MPSO. The multi-objective fitness functions of MPSO minimize the motion and orientation of the DDER during navigation. Due to the minimization of motion and orientation, the DDER covers less distance to reach the goal and takes less time. The Two-Dimensional (2D) and Three-Dimensional (3D) navigation results of the DDER among the scattered obstacles have been presented in the V-REP software environment. The comparative analysis with previously developed Invasive Weed Optimization (IWO) algorithm has also been performed to show the effectiveness and efficiency of the proposed MPSO algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Review
Engineering Review ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
0.00%
发文量
8
期刊介绍: Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信