TA Toone, E. Benjamin, S. Handley, A. Jeffs, J. Hillman
{"title":"贝类养殖业的扩大对定居率没有影响","authors":"TA Toone, E. Benjamin, S. Handley, A. Jeffs, J. Hillman","doi":"10.3354/aei00435","DOIUrl":null,"url":null,"abstract":": Wild shellfish reefs have been decimated in many parts of the world over the last century, diminishing their vital ecological roles as habitat generators and the ecosystem services they provide, such as water filtration. Over this same timescale, shellfish aquaculture has rapidly expanded to become an impressive global industry with an annual worldwide production worth US$35.4 billion in 2020. Both wild reefs and aquaculture operations typically rely on abundant shellfish settlement levels to maintain their respective populations. At the same time, shellfish aquaculture has the potential to influence settlement, as the addition of cultured shellfish to an eco-system increases the quantity of reproductive adults and may therefore increase settlement rates. Alternatively, shellfish aquaculture may lead to an overall reduction in settlement in an ecosystem, either directly through cannibalistic consumption of larvae or indirectly by straining carrying capacity. We assessed the role of marine shellfish aquaculture on settlement by comparing changes in the abundance of settling green-lipped mussels Perna canaliculus with the expansion of mussel farms at the north end of New Zealand’s South Island over a 47 yr timespan. Overall, mussel settlement did not increase over this period despite an estimated 16000-fold increase in the number of mussels living in the region as mussel aquaculture proliferated. The disconnect be tween the extent of mussel settlement and mussel aquaculture was consistent across 3 separate areas within the region, suggesting that aquaculture mussels may be unable to produce larvae capable of settlement and emphasizing the importance of wild mussel populations for ecosystem resilience.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Expansion of shellfish aquaculture has no impact on settlement rates\",\"authors\":\"TA Toone, E. Benjamin, S. Handley, A. Jeffs, J. Hillman\",\"doi\":\"10.3354/aei00435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Wild shellfish reefs have been decimated in many parts of the world over the last century, diminishing their vital ecological roles as habitat generators and the ecosystem services they provide, such as water filtration. Over this same timescale, shellfish aquaculture has rapidly expanded to become an impressive global industry with an annual worldwide production worth US$35.4 billion in 2020. Both wild reefs and aquaculture operations typically rely on abundant shellfish settlement levels to maintain their respective populations. At the same time, shellfish aquaculture has the potential to influence settlement, as the addition of cultured shellfish to an eco-system increases the quantity of reproductive adults and may therefore increase settlement rates. Alternatively, shellfish aquaculture may lead to an overall reduction in settlement in an ecosystem, either directly through cannibalistic consumption of larvae or indirectly by straining carrying capacity. We assessed the role of marine shellfish aquaculture on settlement by comparing changes in the abundance of settling green-lipped mussels Perna canaliculus with the expansion of mussel farms at the north end of New Zealand’s South Island over a 47 yr timespan. Overall, mussel settlement did not increase over this period despite an estimated 16000-fold increase in the number of mussels living in the region as mussel aquaculture proliferated. The disconnect be tween the extent of mussel settlement and mussel aquaculture was consistent across 3 separate areas within the region, suggesting that aquaculture mussels may be unable to produce larvae capable of settlement and emphasizing the importance of wild mussel populations for ecosystem resilience.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/aei00435\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/aei00435","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Expansion of shellfish aquaculture has no impact on settlement rates
: Wild shellfish reefs have been decimated in many parts of the world over the last century, diminishing their vital ecological roles as habitat generators and the ecosystem services they provide, such as water filtration. Over this same timescale, shellfish aquaculture has rapidly expanded to become an impressive global industry with an annual worldwide production worth US$35.4 billion in 2020. Both wild reefs and aquaculture operations typically rely on abundant shellfish settlement levels to maintain their respective populations. At the same time, shellfish aquaculture has the potential to influence settlement, as the addition of cultured shellfish to an eco-system increases the quantity of reproductive adults and may therefore increase settlement rates. Alternatively, shellfish aquaculture may lead to an overall reduction in settlement in an ecosystem, either directly through cannibalistic consumption of larvae or indirectly by straining carrying capacity. We assessed the role of marine shellfish aquaculture on settlement by comparing changes in the abundance of settling green-lipped mussels Perna canaliculus with the expansion of mussel farms at the north end of New Zealand’s South Island over a 47 yr timespan. Overall, mussel settlement did not increase over this period despite an estimated 16000-fold increase in the number of mussels living in the region as mussel aquaculture proliferated. The disconnect be tween the extent of mussel settlement and mussel aquaculture was consistent across 3 separate areas within the region, suggesting that aquaculture mussels may be unable to produce larvae capable of settlement and emphasizing the importance of wild mussel populations for ecosystem resilience.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.