{"title":"康威-麦克斯韦-泊松分布参数的极大似然估计的存在性","authors":"S. Bedbur, U. Kamps, A. Imm","doi":"10.30757/alea.v20-20","DOIUrl":null,"url":null,"abstract":". As a well-known and important extension of the common Poisson model with an additional parameter, Conway-Maxwell-Poisson (CMP) distributions allow for describing under-and overdispersion in discrete data. Constituting a two-parameter exponential family, CMP distributions possess useful structural and statistical properties. However, the exponential family is not steep and maximum likelihood estimation may fail even for non-trivial data sets, which is different from the Poisson case, where maximum likelihood estimation only fails if all data outcomes are zero. Conditions are examined for existence and non-existence of maximum likelihood estimates in the full family as well as in subfamilies of CMP distributions, and several figures illustrate the problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of maximum likelihood estimates for the parameters of the Conway-Maxwell-Poisson distribution\",\"authors\":\"S. Bedbur, U. Kamps, A. Imm\",\"doi\":\"10.30757/alea.v20-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". As a well-known and important extension of the common Poisson model with an additional parameter, Conway-Maxwell-Poisson (CMP) distributions allow for describing under-and overdispersion in discrete data. Constituting a two-parameter exponential family, CMP distributions possess useful structural and statistical properties. However, the exponential family is not steep and maximum likelihood estimation may fail even for non-trivial data sets, which is different from the Poisson case, where maximum likelihood estimation only fails if all data outcomes are zero. Conditions are examined for existence and non-existence of maximum likelihood estimates in the full family as well as in subfamilies of CMP distributions, and several figures illustrate the problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the existence of maximum likelihood estimates for the parameters of the Conway-Maxwell-Poisson distribution
. As a well-known and important extension of the common Poisson model with an additional parameter, Conway-Maxwell-Poisson (CMP) distributions allow for describing under-and overdispersion in discrete data. Constituting a two-parameter exponential family, CMP distributions possess useful structural and statistical properties. However, the exponential family is not steep and maximum likelihood estimation may fail even for non-trivial data sets, which is different from the Poisson case, where maximum likelihood estimation only fails if all data outcomes are zero. Conditions are examined for existence and non-existence of maximum likelihood estimates in the full family as well as in subfamilies of CMP distributions, and several figures illustrate the problem.