块计数过程的缩放限制和一类Λ-coalescents的固定线

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
M. Möhle, Benedict Vetter
{"title":"块计数过程的缩放限制和一类Λ-coalescents的固定线","authors":"M. Möhle, Benedict Vetter","doi":"10.30757/alea.v19-25","DOIUrl":null,"url":null,"abstract":". We provide scaling limits for the block counting process and the fixation line of Λ coalescents as the initial state n tends to infinity under the assumption that the measure Λ on [0 , 1] satisfies (cid:82) [0 , 1] u − 1 | Λ − bλ | (d u ) < ∞ for some b ≥ 0 . Here λ denotes the Lebesgue measure on [0 , 1] . The main result states that the block counting process, properly transformed, converges in the Skorohod space to a generalized Ornstein–Uhlenbeck process as n tends to infinity. The result is applied to beta coalescents with parameters 1 and b > 0 . We split the generators into two parts by additively decomposing Λ into a ‘Bolthausen–Sznitman part’ bλ and a ‘dust part’ Λ − bλ and then prove the uniform convergence of both parts separately.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scaling limits for the block counting process and the fixation line for a class of Λ-coalescents\",\"authors\":\"M. Möhle, Benedict Vetter\",\"doi\":\"10.30757/alea.v19-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We provide scaling limits for the block counting process and the fixation line of Λ coalescents as the initial state n tends to infinity under the assumption that the measure Λ on [0 , 1] satisfies (cid:82) [0 , 1] u − 1 | Λ − bλ | (d u ) < ∞ for some b ≥ 0 . Here λ denotes the Lebesgue measure on [0 , 1] . The main result states that the block counting process, properly transformed, converges in the Skorohod space to a generalized Ornstein–Uhlenbeck process as n tends to infinity. The result is applied to beta coalescents with parameters 1 and b > 0 . We split the generators into two parts by additively decomposing Λ into a ‘Bolthausen–Sznitman part’ bλ and a ‘dust part’ Λ − bλ and then prove the uniform convergence of both parts separately.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-25\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-25","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

。假设在[0,1]上的测度Λ满足(cid:82) [0,1] u−1 | Λ−bλ | (d u) <∞,当初始状态n趋于无穷时,我们给出了块计数过程的缩放极限和Λ聚结的固定线。其中λ表示[0,1]上的勒贝格测度。主要结果表明,当n趋于无穷时,块计数过程经过适当变换,在Skorohod空间收敛为广义Ornstein-Uhlenbeck过程。结果应用于参数为1和b> 0的β聚结。我们通过将Λ分解为“Bolthausen-Sznitman部分”bλ和“dust部分”Λ - bλ将生成器分解为两部分,然后分别证明了这两部分的一致收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling limits for the block counting process and the fixation line for a class of Λ-coalescents
. We provide scaling limits for the block counting process and the fixation line of Λ coalescents as the initial state n tends to infinity under the assumption that the measure Λ on [0 , 1] satisfies (cid:82) [0 , 1] u − 1 | Λ − bλ | (d u ) < ∞ for some b ≥ 0 . Here λ denotes the Lebesgue measure on [0 , 1] . The main result states that the block counting process, properly transformed, converges in the Skorohod space to a generalized Ornstein–Uhlenbeck process as n tends to infinity. The result is applied to beta coalescents with parameters 1 and b > 0 . We split the generators into two parts by additively decomposing Λ into a ‘Bolthausen–Sznitman part’ bλ and a ‘dust part’ Λ − bλ and then prove the uniform convergence of both parts separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信