Hawkes泛函的Malliavin-Stein方法

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac
{"title":"Hawkes泛函的Malliavin-Stein方法","authors":"C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac","doi":"10.30757/alea.v19-52","DOIUrl":null,"url":null,"abstract":". In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Malliavin-Stein method for Hawkes functionals\",\"authors\":\"C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac\",\"doi\":\"10.30757/alea.v19-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-52\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-52","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

。本文根据Nourdin-Peccati的方法,结合Malliavin演算和Stein的方法,给出了复合Hawkes过程泛函律与高斯随机变量泛函律之间的Wasserstein距离的一般界。为了实现这一点,我们依靠Hawkes过程的泊松嵌入表示来为Hawkes过程提供Malliavin演算,更一般地说,为复合Hawkes过程提供Malliavin演算。作为一种应用,我们通过提供一个定量的中心极限定理来填补文献中的空白
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Malliavin-Stein method for Hawkes functionals
. In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信